

Lake Macquarie City Council Preliminary Contamination Assessment Lot 53 DP 1162234, Windale, NSW, 2306 8 February 2018

Experience comes to life when it is powered by expertise This page has been left intentionally blank

Preliminary Contamination Assessment

Prepared for Lake Macquarie City Council

Prepared by Coffey Services Australia Pty Ltd 19 Warabrook Boulevard Warabrook NSW 2304 Australia t: +61 2 4016 2300 f: +61 2 4016 2380 ABN: 55 139 460 521

Project Director	Laurie Fox Senior Principal
Project Manager	Paul Wright Senior Associate

8 February 2018

754-NTLEN213403-R01

Quality information

Revision history

Revision	Description	Date	Author	Reviewer
Rev1	Draft	8/2/2018	Michael Wright	Laurie Fox

Distribution

Report Status	No. of copies	Format	Distributed to	Date
Final	1	PDF	Lake Macquarie City Council	8/2/2018

Executive summary

Lake Macquarie City Council are in the process of re-zoning Lot 53 DP 1162234 in Windale NSW 2306 (the site). The site is open space and bushland and is used as public reserve which it has been for the past approximately 45 years. A review of available information indicates that the site was cleared between 1954 and 1965 and based on the weight of evidence it is likely that some form of mining infrastructure was located on site up until early 1970s. The exact nature of the site activities from late 1880s to 1970s are unknown.

The results of the PSI carried out on the subject lot slated for rezoning by the Lake Macquarie City Council (LMCC) identified no significant chemical contamination or evidence of chemical contamination across the lot extents to be rezoned. The limited assessment of soils (four surface samples including sampling of fill materials) undertaken by Coffey shows no indication of contamination in either the fill or natural soils with the exception of the location containing the drum where TRH is elevated but not above the site assessment criteria. Given the nature of the activity, observations and limited assessment carried out at AEC's the risk of further contamination is judged to be low.

Based on the assessment undertaken and observations made, with the removal of solid waste, the site should be suitable for the proposed rezoning. Further assessments or investigation may be warranted should development works in the rezoned areas be considered.

Table of contents

Abb	reviati	ons	. v
1.	Introc	luction	.1
	1.1.	General	.1
	1.2.	Objectives	.1
	1.3.	Scope of works	.1
2.	Site c	lescription	.2
	2.1.	Site location and identification	.2
	2.2.	Site observations	.2
	2.3.	Site topography and drainage	.3
	2.4.	Geology and soils	.3
	2.5.	Acid sulfate soils	.3
	2.6.	Hydrogeology	.3
3.	Site h	istory review	.4
	3.1.	Information sources	.4
	3.2.	Historical titles search	.4
	3.3.	Aerial photograph review	.5
	3.4.	Section 149 planning certificate	.6
	3.5.	NSW EPA records	.6
	3.6.	Summary of site history	.7
	3.7.	Gaps in the site history	.7
4.	Prelin	ninary conceptual site model	.8
	4.1.	Potential areas and chemicals of environmental concern	.8
	4.2.	Potentially affected media, receptors and transport mechanisms	.8
	4.3.	Potential and complete exposure pathways	.9
5.	Field	work and laboratory testing	10
	5.1.	Scope of works	10
6.	Inves	tigation levels	11
7.	Inves	tigation results	12
	7.1.	Sub surface conditions	12
	7.2.	Analytical results	12
		7.2.1. Quality assurance/ quality control	12
		7.2.2. Analytical laboratories	12
		7.2.3. Soil analytical results	12
8.	Conc	lusions and recommendations	13
9.	Limita	ations	14
10.	Refer	ences	15

Tables (in-text)

Table 1 - Summary of site details	2
Table 2 - Summary of historical titles	4
Table 3 - Aerial photograph review	5
Table 4 - Information from section 149 planning certificate	6
Table 5 – Summary of NSW EPA Listed Contaminated Sites	6
Table 6 - Potential areas and chemicals of environmental concern	8
Table 7 - Summary of potentially affected media, key receptors and transport mechanisms	8
Table 8 - Key potential exposure pathways	9

Figures (Attached)

Figure 1 - Site Location Plan

Figure 2 – Site Features Plan

Appendices

Important information about your Coffey Environmental Report

Figures

Table

- Appendix A Photographs
- Appendix B Historical Titles Search
- Appendix C Aerial Photographs
- Appendix D Section 149 Planning Certificates
- Appendix E Chain of Custody Documentation and Laboratory Certificates of Analysis

Abbreviations

AEC	Area of Environmental Concern
AHD	Australian Height Datum
ASS	Acid Sulfate Soils
bgs	below ground surface
COC	Chemical of Concern
CSM	Conceptual Site Model
NSW EPA	Environmental Protection Authority of New South Wales
NSW OEH	Office of Environment and Heritage of New South Wales
PCA	Phase 1 Preliminary Contamination Assessment

1. Introduction

1.1. General

Lake Macquarie City Council (LMCC) are in the process of re-zoning Lot 53 DP 1162234 in Windale NSW 2306 (the site). The location of the site is shown on Figure 1. The site is approximately 0.5 ha and comprises a mixture of land uses including (RE1) Public Recreation, (E2) Environmental Conservation and (R2) Low Density Residential.

LMCC has requested Coffey to conduct a Preliminary Contamination Assessment (PCA) to fulfil due diligence requirements, prior to rezoning. The purpose of the investigations is to inform LMCC of identifiable potential contamination issues at the site, and their possible significance.

This report was prepared in accordance with the relevant sections of Chapter 3 in Schedule B2, Guideline on Site Characterisation, in the National Environment Protection (Assessment of Site Contamination) Measure (ASC NEPM 1999 amended 2013).

1.2. Objectives

The objectives of the PCA were to:

- Identify evidence of potentially contaminating activities that may be currently occurring or has historically occurred on the site;
- Identify Areas of Environmental Concern (AEC's) and Chemicals of Potential Concern (COPC's) for the site, and develop a preliminary conceptual site model (CSM);
- Undertake a limited sampling and analysis program to initially assess the sub-surface environmental status; and
- Provide recommendations for further assessment and or management, as required.

1.3. Scope of works

In order to achieve the above objectives, the following scope of works was undertaken:

- A historical review of past activities at the site with the potential to cause contamination, including:
 - A review of published information and readily available information held in file by Coffey related to soils, geology and hydrogeology;
 - A review of previous site ownership (land titles search) for the lot comprising the site;
 - A review of selected readily available historical aerial photography imagery over the past 62 years;
 - A review of the Section 149 Planning Certificates held by Council for the lot comprising the site;
 - A review of NSW Environmental Protection Authority (EPA) notices under the Contaminated Land Management Act (1997) and a search of NSW Office of Water for records for nearby registered groundwater bores; and
 - Review and collation of the above information and identification of potential AECs and COPCs for the site.
 - A site walkover of the site to help identify AECs and potential COCs;
 - Collection and analysis of four sub-surface soil samples; and

• Preparation of this report.

2. Site description

2.1. Site location and identification

General site information is provided below in Table 1.

Table 1 - Summary of site details

Site Address	Lot 53, DP1162234, Windale, NSW 2306	
Approximate Site Area	0.5 ha	
Title Identification Details	Lot 53, DP1162234	
Current Land Zoning	 According to the Section 149 Report from the Lake Macquarie City Council, the site is zoned as: E2 Environmental Conservation R2 Low Density Residential RE1 Public Recreation 	
Current Land use	Grassed open space	
Proposed Land use	R2 Low Density Residential and E2 Environmental Conservation	
Adjoining Site Uses	 North – Residential, South Street and bushland South – Former nursey and residential East – Pacific Highway and bushland; and West – Low density residential 	
Site Coordinates	The centre of the site is located approximately at 33.00025947, 151.684405495	

2.2. Site observations

A Coffey scientist visited the site on 11 January 2018. Site photographs were taken during the visit, and are shown in Appendix A.

Observations made during the site walkover included:

- The site as surrounded on two sides by high density public housing with bushland forming the eastern and southern boundaries. A small portion of the north east boundary was adjacent to the Pacific Highway;
- The site consisted of a grassed public reserve, cul-de-sac and bushland;
- The site was observed to slope to the south towards Frazer Gully and to the east towards the Pacific Highway;
- Frazer Gully was located in the southern portion of the site and observed to flow from west to east. Frazer Gully was noted to be without human modifications and overgrown with vegetation (see photo 10 in appendix A);

- Possible fill had been placed in the western portion of the site as the developed areas were raised higher than the surrounding areas;
- The bushland located in the southern portion of the site contained various household wastes discarded over several years including baby strollers and motor vehicle parts (see photos 3 & 4 in Appendix A;
- A rusted out petroleum tank (approximately 200-220L) was also observed in bushland;
- A number of sewage and electrical pits were observed across the site along with a stormwater drain in the southern portion of the site.

2.3. Site topography and drainage

Available topographic information indicates the site's topography is relatively level, with an approximate elevation of 10 m Australian Height datum (AHD).

During the site walkover carried out on 11 January 2018, the site surface appeared to be relatively flat with a slight downward slope from the west to the east. Remnant vegetation comprising the site was mainly grass and trees located within the public reserve.

Rain falling on the site is expected to infiltrate into the site soils. Excess run-off would be channelled to the onsite stormwater drains (drain located in the southern portion of the site). Stormwater draining from the site is anticipated to flow to the south towards Frazer Gully located in the southern portion of the site. Frazer Gully discharges into Croker's Creek which eventually discharges to Jewells Swamp located about 400m to the east.

2.4. Geology and soils

Reference to the 1:100,000 scale Newcastle Coalfields Regional Geology Map indicates that the site is underlain by the late Permian, Newcastle Coal Measures Subgroup consisting of sandstone, conglomerate, shale, tuff and coal (Pn). These rocks typically weather to clays, sandy clays and clayey sands.

2.5. Acid sulfate soils

Reference to the Swansea 1:25,000 Acid Sulfate Soil Risk Map indicates that the site is located in an area of no known occurrence of acid sulfate soils (ASS).

2.6. Hydrogeology

Groundwater beneath the site is anticipated be present at depths between 5 and 10 metres below ground surface (bgs). Regional groundwater flow direction is anticipated to follow the general slope of the region to the east and discharge to Frazer Gully located in the southern portion of the site. Frazer Gully discharges into Croker's Creek which eventually discharges to Jewells Swamp located about 400m to the east.

A search of the NSW Office of Water for registered groundwater bores located within a 500 m radius of the site was undertaken. The search revealed that there are zero bores registered within this radius.

3. Site history review

3.1. Information sources

A site history review was undertaken as part of the PCA, and included:

- An historical title search dating back 134 years;
- A review of aerial photography from the past 64 years;
- A review of the Section 149 Planning Certificate for the site held by Council; and
- A review of NSW EPA notices applying to the site and nearby properties.

The information provided from the above reviews is summarised in the sections below.

3.2. Historical titles search

A search of historical titles for the site was undertaken by Advanced Legal Searchers Pty Ltd. A list of past registered proprietors for the lot was obtained dating back to 1884. The results of the search are included in Appendix B and presented below in Table 2.

Date	Part	Proprietor	Inferred Land Use
1884 – 1887	A & B	Margaret Croker, wife of William Croker, landholder	-
1887 – 1933	A & B	The Scottish Australian Mining Company Limited	-
1933 – 1941	A & B	The Broken Hill Proprietary Company Limited	-
1941 – 1961	A & B	Thomas Jack, fruit merchant	-
1961 – 1970	В	Ruby Irene Brown, married woman	-
1961 - 1963	А	Gladys Jane Jack, widow	-
1970 – 1974	В	Joseph Ewald Guenther Wild, and Hans Dieter Wild, masseur	-
1963 – 1975	A	Roderick Skinner McIntosh, real estate agent and Margaret Alice McIntosh, his wife	-
1975 – 1988	А	The Housing Commission of New South Wales	Government
1974 – 1988	В	The Housing Commission of New South Wales	Government
1988 – to date	A & B	New South Wales Land and Housing Corporation	Government

Table 2 - Summary of historical titles

The historical titles search indicated that the site was owned by a mix of private and commercial owners from 1884 to 1975. From late 1880s to the early 1940s the site was under the control of mining companies and may have been part of a larger mine lease. From 1974 to date the site has been owned by the NSW state government.

3.3. Aerial photograph review

Aerial photographs of the site were purchased from Lotsearch Pty Limited and assessed by a Coffey Environmental Scientist. The results of the aerial photograph review are summarised below in Table 3. The aerial photographs are presented in Appendix C.

Table 3 - Aerial photograph review

Date	Site	Surrounding Land	
1954	The site has been partially cleared with two structures evident, one in the north east corner and another in the middle of the site The remainder of the site is covered in trees.	Medium density houses are present to the north west of the site. Some low density houses are present to the south and north east of the site. The Pacific Highway has been constructed. The remainder of the surrounding areas is open bushland.	
1965	The southern portion of the site has been cleared of trees. Access track has been made to the middle structure from the Pacific Highway and an access track has been made to the south.	Significant development has occurred to the west with high density houses added and commercial properties added north east and south of the site. Duplication of the Pacific Highway has begun to the east of the site. Windale sporting fields have been constructed to the north of the site. South Street has been extended along the northern boundary of the site to join up with the Pacific Highway.	
1976	The structures have been removed and the site appears to be unused.	A commercial development has been completed to the south west of the site. Commercial properties have been added to the north east of the site.	
1984	The site appears to be largely unchanged since 1976.	The present day public housing has been constructed directly to the west of the site. The surrounding areas remain relatively unchanged to the previous aerial.	
1993	There appears to be more vegetation in the southern portions with the north being largely unchanged since 1984	The surrounding areas remain relatively unchanged to the previous aerial.	
2004	More vegetation has grown in the north of the site and the south appears to be largely unchanged since 1993	The surrounding areas remain relatively unchanged to the previous aerial.	
2018	Vegetation covers a large portion of the site in both the north and south.	The commercial property to the south west of the site has been demolished in preparation for a medium density residential development. The nursey directly to the south of the site has also been decommissioned. The Bennett's Green commercial/industrial development has been extended.	

3.4. Section 149 planning certificate

A copy of the Section 149 Certificates for the site were obtained from Lake Macquarie City Council with copies of the certificates provided in Appendix D. Table 4 (below) summarises the information contained within the certificate.

Table 4 - Information from section 149 planning certificate

Zoning	Critical Habitats	Conservation Areas	Hazard Risk Restrictions	Mine Subsidence Issues	Flooding Issues
E2 Environmental Conservation R2 Low Density Residential RE1 Public Recreation	None	None	Bushfire, Acid Sulfate Soils Landslip/subsidence Flood Risk	The land is within a proclaimed mine subsidence district under the Mine Subsidence Compensation Act 1961.	Development on this land or part of the land for any other purpose is subject to flood related development controls

In relation to matters arising under the Contaminated Land Management (CLM) Act 1997, there are no prescribed matters noted.

3.5. NSW EPA records

A search of the NSW EPA database revealed that there are eight properties registered within the Lake Macquarie City Council Local Government Area as having current and/or former notices. Table 5 (below) summarises the information contained on the EPA website.

Table 5: Summary of NSW EPA Listed Contaminated Sites

Address	Use	Location from site
Off Creek Reserve Road, Boolaroo	Cockle Creek and Cockle Bay Sediments	8 kms north west
13 Main Street, Boolaroo	Incitec Pivot	8 kms north west
Lake Road, Boolaroo	Pasminco Cockle Creek Smelter	8 kms north west
81 Pacific Highway, Charlestown	Caltex Service Station	4 kms north
91-93 Pacific Highway, Charlestown	Caltex Woolworths	4 kms north
555-565 Pacific Highway, Crangan Bay	Big T Road House	20 kms south
770-772 Pacific Highway Marks Point	Former Mobil Service Station (now 7- Eleven)	8.5 kms south
21 Racecourse Road, Teralba	Scrap Metal Yard	8.5 kms west

Based on the distances from the site of the eight properties listed, it is considered unlikely that contamination on these properties would pose a risk to the site.

3.6. Summary of site history

The information obtained from the site history has been summarised below:

- The site was part of mining lease from the late 1880s to the early 1940s.
- Partial clearing and use of the site was probably related to mining activities and ceased in sometime in the late 1960s early 1970s;
- Since 1975, the site has remained vacant until the present day;
- Planning certificates and databases maintained by the NSW EPA indicate that that the site and land immediately surrounding the site has not been subject to notices issued under the Contaminated Land Management Act 1997.

3.7. Gaps in the site history

The following information sources were referred to for this assessment:

- NSW EPA;
- Planning certificate provided by LMCC;
- Historical land titles search conducted between 1884 and 2018;
- Aerial photographs and Google Earth images provided for the period between 1954 and 2016; and
- Observations made in the field during the site walkover.

The use of the site when owned by the mining companies is unknown but based on the weight of evidence it is likely that some form of mining infrastructure was located on site up until early 1970s. The exact nature of the site activities from late 1880s to 1970s are unknown.

The observations made during the site walkover were generally consistent with the recent aerial photographs.

The period between aerial photographs reviewed ranged between one and 11 years. It is considered however that major land use changes have been encapsulated in the review of aerial photographs and this is not considered to be a significant data gap.

Planning certificates supplied by LMCC were consistent with those provided within public registers maintained by the NSW EPA with regard to notices and orders issued under the Contaminated Land Management Act 1997.

The origin and quality of fill present on site is not known.

4. Preliminary conceptual site model

Based on the site history review and site walkover, a preliminary conceptual site model (CSM) has been developed.

4.1. Potential areas and chemicals of environmental concern

Table 6 (below) shows the AECs and associated COCs identified.

	Table 6 - Potential areas	and chemicals of	f environmental concern
--	---------------------------	------------------	-------------------------

AEC	Potentially Contaminating Activity	Potential COCs	Likelihood of Contamination*	Comments
1 (Entire Site)	Potentially impacted fill of unknown origin	Heavy metals, TRH, BTEX, PAH, OCP, OPP	Low to medium	Fill material is present across the site.
2 (Localised storage container)	Leakage of petroleum from drum	om TRH, BTEX, Low to N		Petroleum drum found within vegetation.
Previous use as a mine or mine related activity	Impact from hazardous building materials (asbestos and lead), possible leaks of oil and fuel	Heavy metals TRH BTEX PAH, and asbestos	Low	Previous Ownership by mining companies and unexplained activities up till early 1970s

Notes: * = This is a qualitative assessment of the probability of contamination being detected at the potential AEC.

Metals - Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel and Zinc; BTEX - Benzene, Toluene, Ethylbenzene and Xylenes; TRH - Total Recoverable Hydrocarbons; PAH - Polycyclic Aromatic Hydrocarbons; OCP - Organochlorine Pesticides; OPP - Organophosphorous Pesticides; PCB - Polychlorinated Biphenyls; VOC - Volatile Organic Compounds; SVOC - Semi-volatile Organic Compounds

4.2. Potentially affected media, receptors and transport mechanisms

Table 7 summarised the potentially affected media, key potential receptors and transport mechanisms.

Table 7 - Summary of pe	otentially affected media,	key receptors and	transport mechanisms
-------------------------	----------------------------	-------------------	----------------------

Consideration	Information
Potentially Affected Media	Shallow soil – fill material and upper layers of natural residual soil.

Potential Transport Mechanisms & Exposure Pathways	Dermal contact with contaminated soil Ingestion of contaminated soil Vapour/gas inhalation Inhalation of airborne dusts and fibres Infiltration and leaching generation from unsaturated soils Lateral and vertical groundwater migration
Potential Receptors of Contamination	 Construction/maintenance workers Potential exposure via direct vapour inhalation Potential exposure via dermal contact with soil and ingestion of soil. Potential exposure via secondary inhalation of airborne dusts. Future Site Users Potential exposure via dermal contact, and ingestion/inhalation of soil and dust. Contact with groundwater is considered unlikely for the proposed site user given potable water will be supplied by reticulated water supply. Groundwater Contaminants could leach from soils into groundwater. Surface Water – Frazer Gully Lateral transport of groundwater and discharge at the nearest surface water receptor – Frazer Gully

4.3. Potential and complete exposure pathways

Table 8 summarises the identified key potential exposure pathways.

Table 8 ·	- Key	potential	exposure	pathways
-----------	-------	-----------	----------	----------

Receptor	Exposure Pathway	Comment
Construction/ Maintenance Workers	Complete	There is a potential for workers conducting subsurface works to be exposed to soils containing potential contaminants via dermal contact, ingestion and inhalation pathways.
Future site users	Complete	There is a potential for future site users to be exposed to soils containing potential contaminants via dermal contact, ingestion and inhalation pathways.
Groundwater	Partially complete	Given the shallow depth to groundwater which is approximately is 5 to 10mbgs, the path may be complete (a full soil profile was not completed)
Surface Water	Complete	Given the slope of the site and the potential for run off to Frazer Gully, which runs through the southern portion of the site, a complete exposure pathway exists

5. Fieldwork and laboratory testing

Fieldwork activities were undertaken at the site on 11 January 2018 and 5 February 2018 to further assess the identified plausible potentially complete exposure pathways set out in Table 7. Sampling was to be completed if any AECs were identified on the site. A rusted diesel drum was found discarded in vegetation and a surface soil sample (0.0-0.1mbgs) LMCC-W1 was collected from beside the drum. Three surface samples were collected on the 5 February 2018 with two samples, LMCC-W2 and LMCC-W3 collected to assess the potential fill and LMCC-W4 to assess the impact of a former housing structure.

5.1. Scope of works

The following scope of works was undertaken:

- One surface sample (LMCC-W1) was collected in an area where a rusted steel oil drum was located;
- Two surface samples (LMCC-W2 and LMCC-W3) were collected to assess possible fill in the areas to be rezoned;
- One surface sample (LMCC-W4) was collected to assess the potential impact of the former house located in the vicinity of Frazer Gully;
- Visual and olfactory observations were noted on the field screening sheets. Soil samples were collected using a fresh pair of disposable nitrile gloves to prevent cross contamination. Soil samples were placed in clean, laboratory-supplied acid washed glass jars and stored on ice and in a cooler while on-site and in transit to the analytical laboratories; and
- The soil samples wer submitted selectively for laboratory analysis for identified COPC's including heavy metals, TRH, BTEX, PAHs, OCPs and heavy metals including (Arsenic, Cadmium, Chromium, Copper, Lead, Mercury. Nickel and Zinc.

6. Investigation levels

The screening criteria have been derived on the basis of conservative assumptions relating to land use, receptor behaviour, site, building and soil characteristics.

Soil analytical results have been compared against ASC NEPM (2013) health investigation levels (HILs) HIL-A & B 'Residential' based on assumptions regarding exposure settings related to non-sensitive land use.

Discussion of results has also been related to the ASC NEPM (2013) Health Screening Levels (HSLs) (derived from CRC CARE HSLs (CRC CARE, 2011)) for vapour intrusion for further evaluation of potential risks to human health resulting from intrusion of hydrocarbon vapours emanating from soil impacts at the site. HSLs have been adopted based on the potential receptors, subsurface lithology and depth of impacts to soil.

To facilitate screening against HILs and HSLs relevant to the site, the following have been included in the soil analytical data table (Table 1):

- ASC NEPM (2013) Health Investigation Levels, HIL- A and B, Residential;
- ASC NEPM (2013) Soil HSLs for Vapour Intrusion, HSL- A/B Residential, Sand, 0 to <1m;

The soil screening assessment criteria are for comparative purposes only and should not be regarded as "clean-up" levels.

7. Investigation results

7.1. Sub surface conditions

Soil encountered at the surface soil location consisted primarily of gravelly sand fill material in the upper 0 - 0.1m bgs and brown in colour. No staining was observed in any of the samples taken.

7.2. Analytical results

7.2.1. Quality assurance/ quality control

In order to assess field quality assurance / quality control (QA/QC) procedures, one duplicate sample (QC1) was collected and analysed with primary sample LMCC-W1. The results of the field duplicate sampling are presented in Table LR2 (attached). The results of the field duplicate sampling indicated that Relative Percentage Differences (RPD's) were recorded below the relevant acceptance limit criteria with the exception of lead, zinc and a number of TRH fractions. The RPD exceedances are likely attributed to the distribution of the contaminants within the fill material and are not considered to affect the usability of the results. The variability observed in some samples is not considered to substantially affect the conclusions of this assessment, as concentrations were within expected ranges.

The laboratory conducted internal quality control using laboratory duplicates, spikes and method blanks. The laboratory internal quality control showed duplicates within laboratory acceptable limits. The method blank results were recorded below the laboratory limit of reporting, and spike recoveries within control limits. Based on the review of the QA/QC data, it is considered that the soil results are likely to be representative of conditions at the sampling locations at the time of sampling and are suitable for use in this waste classification assessment.

7.2.2. Analytical laboratories

Samples were forwarded to Eurofins MGT Environmental Testing Australia Pty Ltd (Eurofins); National Association of Testing Authority (NATA) accredited for all analyses requested.

7.2.3. Soil analytical results

Soil analytical results and comparisons to the screening assessment criteria are presented in Table LR1. Laboratory certificates of analysis and chain of custody (COC) documentation with analysis requests are provided in Appendix E. Concentrations of COPC's, in each sample tested, were measured below the relevant NEPM 2013 HIL A & B /HSL A/B Residential Guidelines.

8. Conclusions and recommendations

The results of the PSI carried out on the subject lot slated for rezoning by the Lake Macquarie City Council (LMCC) identified no significant chemical contamination or evidence of chemical contamination across the lot extents to be rezoned. The limited assessment of soils (four surface sample including sampling of fill materials) undertaken by Coffey shows no indication of contamination in either the fill or natural soils with the exception of the location containing the drum where TRH is elevated but not above the site assessment criteria. Given the nature of the activity, observations and limited assessment carried out, the risk of further contamination is judged to be low.

There does remain some uncertainty associated with the extent and quality of fill across the site as we did not employ a sample density that met the NSW sampling guidelines (more typically utilised in a Detailed Site Assessment). Based on the observations made within the areas identified for rezoning and the limited sampling conducted, the site should be suitable for the proposed rezoning. Further assessments or investigation may be warranted should development works in the rezoned areas be considered.

This report must be read in conjunction with the attached "Important Information about your Coffey Environmental Report".

9. Limitations

In preparing this report, current guidelines for assessment and management of contaminated land were followed. This work has been conducted in good faith in accordance with Coffey's understanding of the client's brief and general accepted practice for environmental consulting.

This report was prepared for Lake Macquarie City Council, with the objectives of identifying potentially contaminating activities that are currently being performed on the site and that may have been performed on the site in the past, assessing Areas of Environmental Concern (AECs) and Chemicals of Potential Concern (COPCs) for the site, and providing recommendations for further assessment and or management (if required). No warranty, expressed or implied, is made as to the information and professional advice included in this report. Anyone using this document does so at their own risk and should satisfy themselves concerning its applicability and, where necessary, should seek expert advice in relation to the particular situation.

This report does not provide information or recommendations related to mine subsidence or geotechnical interpretation.

10. References

Advanced Legal Searchers Pty Ltd (2018) Historical Titles Search for Lot 53 DP 1662234, Windale, NSW, 2306.

Lot Search Pty Ltd (2018) Aerial Photography for Lot 53 DP 1662234, Windale, NSW, 2306 (1954, 1965, 1976, 1984, 1993, 2004, 2018).

Department of Mineral Resources (1995) Newcastle Coalfield Regional 1:100 000 Geology Map, Edition 1, Map Number 9231 and part of 9131, 9132 and 9232.

Lake Macquarie City Council (2018) Section 149 Planning Certificate, Lot 53 DP 1662234, Windale, NSW, 2306 dated 25 January 2018.

Land and Property Information (2001) 1:25,000 Topographic Map, Edition 3.

NSW Office of Water (2018) Groundwater Bore Search, accessed from <u>http://allwaterdata.water.nsw.gov.au/water.stm</u>

NSW EPA (2018) Register of Contaminated Sites: Windale Local Government Area, accessed from http://www.environment.nsw.gov.au/prcImapp/searchregister.aspx

NSW OEH (2011) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites, OEH 2011/0650, ISBN 0 7310 3892 4, Office of Environment and Heritage, Sydney.

Important information about your Coffey Environmental Report

Important information about your **Coffey** Environmental Report

Introduction

This report has been prepared by Coffey for you, as Coffey's client, in accordance with our agreed purpose, scope, schedule and budget.

The report has been prepared using accepted procedures and practices of the consulting profession at the time it was prepared, and the opinions, recommendations and conclusions set out in the report are made in accordance with generally accepted principles and practices of that profession.

The report is based on information gained from environmental conditions (including assessment of some or all of soil, groundwater, vapour and surface water) and supplemented by reported data of the local area and professional experience. Assessment has been scoped with consideration to industry standards, regulations, guidelines and your specific requirements, including budget and timing. The characterisation of site conditions is an interpretation of information collected during assessment, in accordance with industry practice,

This interpretation is not a complete description of all material on or in the vicinity of the site, due to the inherent variation in spatial and temporal patterns of contaminant presence and impact in the natural environment. Coffey may have also relied on data and other information provided by you and other qualified individuals in preparing this report. Coffey has not verified the accuracy or completeness of such data or information except as otherwise stated in the report. For these reasons the report must be regarded as interpretative, in accordance with industry standards and practice, rather than being a definitive record.

Your report has been written for a specific purpose

Your report has been developed for a specific purpose as agreed by us and applies only to the site or area investigated. Unless otherwise stated in the report, this report cannot be applied to an adjacent site or area, nor can it be used when the nature of the specific purpose changes from that which we agreed.

For each purpose, a tailored approach to the assessment of potential soil and groundwater contamination is required. In most cases, a key objective is to identify, and if possible quantify, risks that both recognised and potential contamination pose in the context of the agreed purpose. Such risks may be financial (for example, clean up costs or constraints on site use) and/or physical (for example, potential health risks to users of the site or the general public).

Limitations of the Report

The work was conducted, and the report has been prepared, in response to an agreed purpose and scope, within time and budgetary constraints, and in reliance on certain data and information made available to Coffey.

The analyses, evaluations, opinions and conclusions presented in this report are based on that purpose and scope, requirements, data or information, and they could change if such requirements or data are inaccurate or incomplete.

This report is valid as of the date of preparation. The condition of the site (including subsurface conditions) and extent or nature of contamination or other environmental hazards can change over time, as a result of either natural processes or human influence. Coffey should be kept appraised of any such events and should be consulted for further investigations if any changes are noted, particularly during construction activities where excavations often reveal subsurface conditions.

In addition, advancements in professional practice regarding contaminated land and changes in applicable statues and/or guidelines may affect the validity of this report. Consequently, the currency of conclusions and recommendations in this report should be verified if you propose to use this report more than 6 months after its date of issue.

The report does not include the evaluation or assessment of potential geotechnical engineering constraints of the site.

Interpretation of factual data

Environmental site assessments identify actual conditions only at those points where samples are taken and on the date collected. Data derived from indirect field measurements, and sometimes other reports on the site, are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact with respect to the report purpose and recommended actions.

Variations in soil and groundwater conditions may occur between test or sample locations and actual conditions may differ from those inferred to exist. No environmental assessment program, no matter how comprehensive, can reveal all subsurface details and anomalies. Similarly, no professional, no matter how well qualified, can reveal what is hidden by earth, rock or changed through time.

The actual interface between different materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions.

For this reason, parties involved with land acquisition, management and/or redevelopment should retain the services of a suitably qualified and experienced environmental consultant through the development and use of the site to identify variances, conduct additional tests if required, and recommend solutions to unexpected conditions or other unrecognised features encountered on site. Coffey would be pleased to assist with any investigation or advice in such circumstances.

Recommendations in this report

This report assumes, in accordance with industry practice, that the site conditions recognised through discrete sampling are representative of actual conditions throughout the investigation area. Recommendations are based on the resulting interpretation.

Should further data be obtained that differs from the data on which the report recommendations are based (such as through excavation or other additional assessment), then the recommendations would need to be revised and may need to be revised.

Report for benefit of client

Unless otherwise agreed between us, the report has been prepared for your benefit and no other party. Other parties should not rely upon the report or the accuracy or completeness of any recommendation and should make their own enquiries and obtain independent advice in relation to such matters.

Coffey assumes no responsibility and will not be liable to any other person or organisation for, or in relation to, any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report.

To avoid misuse of the information presented in your report, we recommend that Coffey be consulted before the report is provided to another party who may not be familiar with the background and the purpose of the report. In particular, an environmental disclosure report for a property vendor may not be suitable for satisfying the needs of that property's purchaser. This report should not be applied for any purpose other than that stated in the report.

Interpretation by other professionals

Costly problems can occur when other professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, a suitably qualified and experienced environmental consultant should be retained to explain the implications of the report to other professionals referring to the report and then review plans and specifications produced to see how other professionals have incorporated the report findings.

Given Coffey prepared the report and has familiarity with the site, Coffey is well placed to provide such

Coffey Environments Australia Pty Ltd ABN 65 140 765 902 Issued: 22 October 2013 assistance. If another party is engaged to interpret the recommendations of the report, there is a risk that the contents of the report may be misinterpreted and Coffey disowns any responsibility for such misinterpretation.

Data should not be separated from the report

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way. Logs, figures, laboratory data, drawings, etc. are customarily included in our reports and are developed by scientists or engineers based on their interpretation of field logs, field testing and laboratory evaluation of samples. This information should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

This report should be reproduced in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties.

Responsibility

Environmental reporting relies on interpretation of factual information using professional judgement and opinion and has a level of uncertainty attached to it, which is much less exact than other design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded. As noted earlier, the recommendations and findings set out in this report should only be regarded as interpretive and should not be taken as accurate and complete information about all environmental media at all depths and locations across the site.

Figures

	no.	description	drawn	approved date		drawn	SB / AW				ITY COUNCIL (LMCC)	
	A	ORIGINAL ISSUE				approved	-		project:	PHASE 1 CONTAMIN		
evisio					Scale (metres) 1:1000	date	9 / 02 / 18	coffev		WINDA	LE, NSW	
1						scale	AS SHOWN	A TETRA TECH COMPANY	title:	SITE FEAT	URES PLAN	
					AERIAL IMAGERY COPYRIGHT: @Land and Property Information (2015) SOURCED FROM WEBSITE: http://www.lpi.nsw.gov.au/mapping_and_imagerylpi_web_services LICENSED UNDER CC BY 3.0 AU (https://creativecommons.org/licenses/by/3.0/au/legalcode)	original size	A3	1	project no:	754-NTLEN213403-AA	figure no: FIGURE 2	rev: A

Tables

Table LR01 - Analytical Results NTLEN213403 Lake Macquarie City Council Windale

						Sample ID	LMCC-W1	LMCC-W2	LMCC-W3	LMCC-W4
						Sample date	11/01/2018	5/02/2018	5/02/2018	5/02/2018
Anaylytes		Units	EQL	NEPM 2013 HILs Residential A Soil	NEPM 2013 HILs Residential B Soil	NEPM 2013 Residential Soil HSL A/B for Vapour Intrusion 0 to <1m Sand				
DTEV	Renzene	ma/ka	0.1				<01	<01	<0.1	<01
DILX	Ethylbenzene	mg/kg	0.1			55	<0.1	<0.1	<0.1	<0.1
	Toluene	mg/kg	0.1			160	<0.1	<0.1	<0.1	<0.1
	Xylene (m & p)	mg/kg	0.2				<0.2	<0.2	<0.2	<0.2
	Xylene (o)	mg/kg	0.1			40	<0.1	<0.1	<0.1	<0.1
	C6-C10 less BTEX (F1)	mg/kg	0.5 20			40	<0.5	<0.3	<0.3	<0.5
Halogenated Phenols	tetrachlorophenols	mg/kg	1				<1	<1	<1	<1
Metals	Arsenic	mg/kg	2	100	500		2	2.9	4.2	4.2
	Cadmium	mg/kg	0.4	20	150		<0.4	0.6	<0.4	<0.4
	Copper	mg/kg	5	6000	30000		<5 7 2	18	9.7 5.0	<5 7 7
	Lead	mg/kg	5	300	1200		26	29	16	31
	Mercury	mg/kg	0.1	40	120		<0.1	<0.1	<0.1	<0.1
	Nickel	mg/kg	5	400	1200		<5	15	5.8	<5
0.00	Zinc	mg/kg	5	7400	60000		56	74	42	94
OCP	4,4-DDE	mg/kg	0.05				< 0.05	-	-	-
	Aldrin	mg/kg mg/kg	0.05				<0.05	-	-	-
	Aldrin + Dieldrin	mg/kg	0.05	6	10		< 0.05	-	-	-
	b-BHC	mg/kg	0.05				<0.05	-	-	-
	Chlordane	mg/kg	0.1	50	90		<0.1	-	-	-
	d-BHC	mg/kg	0.05				< 0.05	-	-	
	דסס	mg/kg	0.05 0.05				<0.05 <0.05	-	-	
	DDT+DDE+DDD	mg/kg	0.05	240	600		<0.05	-	-	
	Dieldrin	mg/kg	0.05	210			<0.05	-	-	-
	Endosulfan I	mg/kg	0.05				<0.05	-	-	-
	Endosulfan II	mg/kg	0.05				<0.05	-	-	
	Endosulfan sulphate	mg/kg	0.05	10	20		< 0.05	-	-	
	Endrin Endrin aldehyde	mg/kg	0.05 0.05	10	20		<0.05	-	-	-
	Endrin ketone	mg/kg	0.05				< 0.05	-	_	-
	g-BHC (Lindane)	mg/kg	0.05				< 0.05	-	-	-
	Heptachlor	mg/kg	0.05	6	10		<0.05	-	-	-
	Heptachlor epoxide	mg/kg	0.05				<0.05	-	-	-
	Hexachlorobenzene	mg/kg	0.05	10	15		<0.05	-	-	-
	Nietnoxychior	mg/kg	0.05	300	30		<0.05	-	-	-
	Vic EPA IWRG 621 OCP (Total)*	mg/kg	0.1	20	50		<0.1	-	_	-
	Vic EPA IWRG 621 Other OCP (Total)*	mg/kg	0.1				<0.1	-	-	-
OPP	Azinophos methyl	mg/kg	0.2				<0.2	-	-	-
	Bolstar (Sulprofos)	mg/kg	0.2				<0.2	-	-	-
	Chlorfenvinphos	mg/kg	0.2	100	240		<0.2	-	-	-
	Chlorpyrifos-methyl	mg/kg	0.2	160	340		<0.2	-	-	-
	Coumaphos	mg/kg	2				<2	-	_	-
	Demeton-O	mg/kg	0.2				<0.2	-	-	-
	Demeton-S	mg/kg	0.2				<0.2	-	-	-
	Diazinon	mg/kg	0.2				<0.2	-	-	-
	Dichlorvos	mg/kg	0.2				<0.2	-	-	-
	Dimethoate	mg/kg mg/kg	0.2				<0.2	-	-	-
	Ethion	mg/kg	0.2				<0.2	-	-	-
	Ethoprop	mg/kg	0.2				<0.2	-	-	-
	Fenitrothion	mg/kg	0.2				<0.2	-	-	-
	Fensulfothion	mg/kg	0.2				<0.2	-	-	-
	Fenthion	mg/kg	0.2				<0.2	-	-	-
	Merphos	mg/kg	0.2				<0.2	-	-	-
	Methyl parathion	mg/kg	0.2				<0.2	-	-	-
	Mevinphos (Phosdrin)	mg/kg	0.2				<0.2	-	-	-
	Monocrotophos	mg/kg	2				<2	-	-	<u> </u>
	Naled (Dibrom)	mg/kg	0.2				<0.2	-	-	
	Parathion	mg/kg	<u>د</u> 0.2				<0.2	-	-	
	Phorate	mg/kg	0.2				<0.2	-	-	-
	Pyrazophos	mg/kg	0.2				<0.2	-		-
	Ronnel	mg/kg	0.2				<0.2	-	-	
	Terbufos	mg/kg	0.2				<0.2	-	-	ļ
	I richloronate	mg/kg	0.2				<0.2	-	-	-
	Tokuthion	mg/kg	0.2				<0.2	-	-	
РАН	Acenaphthene	mg/kg	0.5				<0.5	<0.5	<0.5	<0.5
	Acenaphthylene	mg/kg	0.5				<0.5	<0.5	<0.5	<0.5
	Anthracene	mg/kg	0.5				<0.5	<0.5	<0.5	<0.5
	Benzo(a)anthracene	mg/kg	0.5				<0.5	<0.5	<0.5	<0.5
	Benzo(a)pyrene	mg/kg	0.5 0 5				<0.5 20 F	<0.5	<0.5	<0.5 20 F
	Benzo(a)pyrene TEQ (medium bound) *	mg/kg	0.5				0.5	0.6	0.6	0.6
	Benzo(a)pyrene TEQ (upper bound) *	mg/kg	0.5				1.2	1.2	1.2	1.2
	Benzo(g,h,i)perylene	mg/kg	0.5				<0.5	<0.5	<0.5	<0.5
	Benzo(k)fluoranthene	mg/kg	0.5				<0.5	<0.5	<0.5	<0.5
	Chrysene	mg/kg	0.5				<0.5	<0.5	<0.5	<0.5
	Benzo[b+j]fluoranthene	mg/kg	0.5 0.5				<0.5	<0.5	<0.5	<0.5
	Eluoranthene	mg/kg	0.5 0.5				<0.5 20 5	<0.5 20 5	<0.5 20 5	<0.5 <0.5
	Fluorene	mg/kg	0.5				<0.5	<0.5	<0.5	<0.5
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.5				<0.5	<0.5	< 0.5	<0.5
1	Naphthalene	mg/kg	0.5			3	<0.5	<0.5	<0.5	<0.5
	Phenanthrene	mg/kg	0.5				<0.5	<0.5	<0.5	<0.5

Table LR01 - Analytical Results NTLEN213403 Lake Macquarie City Council Windale

	Pyrene	mg/kg	0.5				<0.5	<0.5	<0.5	<0.5
	Total PAHs	mg/kg	0.5	300	400		<0.5	<0.5	<0.5	<0.5
Pesticides	Pirimiphos-methyl	mg/kg	0.2				<0.2	-	-	-
Phenol	2,4,5-trichlorophenol	mg/kg	1				<1	<1	<1	<1
	2,4,6-trichlorophenol	mg/kg	1				<1	<1	<1	<1
	2,4-dichlorophenol	mg/kg	0.5				<0.5	<0.5	<0.5	<0.5
	2,4-dimethylphenol	mg/kg	0.5				<0.5	<0.5	<0.5	<0.5
	2,4-dinitrophenol	mg/kg	5				<5	<5	<5	<5
	2,6-dichlorophenol	mg/kg	0.5				<0.5	<0.5	<0.5	<0.5
	2-chlorophenol	mg/kg	0.5				<0.5	<0.5	<0.5	<0.5
	2-methylphenol	mg/kg	0.2				<0.2	<0.2	<0.2	<0.2
	2-nitrophenol	mg/kg	1				<1	<1	<1	<1
	3-&4-methylphenol	mg/kg	0.4				<0.4	<0.4	<0.4	<0.4
	4,6-Dinitro-2-methylphenol	mg/kg	5				<5	<5	<5	<5
	4,6-Dinitro-o-cyclohexyl phenol	mg/kg	20				<20	<20	<20	<20
	4-chloro-3-methylphenol	mg/kg	1				<1	<1	<1	<1
	4-nitrophenol	mg/kg	5				<5	<5	<5	<5
	Dinoseb	mg/kg	20				<20	<20	<20	<20
	Pentachlorophenol	mg/kg	1	100	130		<1	<1	<1	<1
	Phenol	mg/kg	0.5	3000	45000		<0.5	<0.5	<0.5	<0.5
	Phenols (Total Halogenated)	mg/kg	1				<1	<1	<1	<1
	Phenols (Total Non Halogenated)	mg/kg	20				<20	<20	<20	<20
SVOCs	EPN	mg/kg	0.2				<0.2	-	-	-
ТРН	F2-NAPHTHALENE	mg/kg	50			110	71	<50	<50	<50
	C6 - C9	mg/kg	20				<20	<20	<20	<20
	C10 - C14	mg/kg	20				70	<20	<20	<20
	C15 - C28	mg/kg	50				540	100	150	<50
	C29 - C36	mg/kg	50				1200	100	130	92
	C10 - C36 (Sum of total)	mg/kg	50				1810	200	280	92
	C10-C16	mg/kg	50				71	<50	<50	<50
	C16-C34	mg/kg	100				1400	120	210	100
	C34-C40	mg/kg	100				480	<100	<100	<100
	C6 - C10	mg/kg	20				<20	<20	<20	<20

Result	Exceeds NEPM 2013 HILs Residential A Soil guidelines
Result	Exceeds NEPM 2013 HILs Residential B Soil guidelines
Result	Exceeds NEPM 2013 Residential Soil HSL A/B for Vapour Intrusion
	0 to <1m, Sand guidelines

Sample ID	LMCC-W1	QC1	RPD
Sample date	11/01/2018	11/01/2018	

	Analytes	Units	EQL			
BTEX	Benzene	mg/kg	0.1	<0.1	<0.1	0
	Ethylbenzene	mg/kg	0.1	<0.1	<0.1	0
	Toluene	mg/kg	0.1	<0.1	<0.1	0
	Xylene (m & p)	mg/kg	0.2	<0.2	<0.2	0
	Xylene (o)	mg/kg	0.1	<0.1	<0.1	0
	Xylene Total	mg/kg	0.3	<0.3	<0.3	0
	C6-C10 less BTEX (F1)	mg/kg	20	<20.0	<20.0	0
Halogenated Phenols	tetrachlorophenols	mg/kg	1	<1.0	<1.0	0
Metals	Arsenic	mg/kg	2	2.0	2.8	33
	Cadmium	mg/kg	0.4	<0.4	0.5	22
	Chromium	mg/kg	5	<5.0	5.1	2
	Copper	mg/kg	5	7.2	12.0	50
	Lead	mg/kg	5	26.0	37.0	35
	Mercury	mg/kg	0.1	<0.1	<0.1	0
	Nickel	mg/kg	5	<5.0	<5.0	0
	Zinc	mg/kg	5	56.0	91.0	48
OCP	4,4-DDE	mg/kg	0.05	<0.05	<0.05	0
	a-BHC	mg/kg	0.05	<0.05	<0.05	0
	Aldrin	mg/kg	0.05	<0.05	<0.05	0
	Aldrin + Dieldrin	mg/kg	0.05	<0.05	<0.05	0
	b-BHC	mg/kg	0.05	<0.05	<0.05	0
	Chlordane	mg/kg	0.1	<0.1	<0.1	0
	d-BHC	mg/kg	0.05	<0.05	<0.05	0
	DDD	mg/kg	0.05	<0.05	<0.05	0
	DDT	mg/kg	0.05	<0.05	<0.05	0
	DDT+DDE+DDD	mg/kg	0.05	<0.05	<0.05	0
	Dieldrin	mg/kg	0.05	<0.05	<0.05	0
	Endosulfan I	mg/kg	0.05	<0.05	<0.05	0
	Endosulfan II	mg/kg	0.05	<0.05	<0.05	0
	Endosulfan sulphate	mg/kg	0.05	<0.05	<0.05	0
	Endrin	mg/kg	0.05	<0.05	<0.05	0
	Endrin aldehyde	mg/kg	0.05	<0.05	<0.05	0
	Endrin ketone	mg/kg	0.05	<0.05	<0.05	0
	g-BHC (Lindane)	mg/kg	0.05	<0.05	<0.05	0
	Heptachlor	mg/kg	0.05	<0.05	<0.05	0
	Heptachlor epoxide	mg/kg	0.05	<0.05	<0.05	0
	Hexachlorobenzene	mg/kg	0.05	<0.05	<0.05	0
	Methoxychlor	mg/kg	0.05	<0.05	<0.05	0
	Toxaphene	mg/kg	1	<1.0	<1.0	0
	Vic EPA IWRG 621 OCP (Total)*	mg/kg	0.1	<0.1	<0.1	0
0.55	Vic EPA IWRG 621 Other OCP (Total)*	mg/kg	0.1	<0.1	<0.1	0
OPP	Azinophos methyl	mg/kg	0.2	<0.2	<0.2	0
	Bolstar (Sulprofos)	mg/kg	0.2	<0.2	<0.2	0
	Chlorfenvinphos	mg/kg	0.2	<0.2	<0.2	0
	Chlorpyrifos	mg/kg	0.2	<0.2	<0.2	0
	Chlorpyrifos-methyl	mg/kg	0.2	<0.2	<0.2	0
	Coumaphos	mg/kg	2	<2.0	<2.0	0
	Demeton-O	mg/kg	0.2	<0.2	<0.2	0
	Demeton-S	mg/kg	0.2	<0.2	<0.2	0
	Diazinon	mg/kg	0.2	<0.2	<0.2	0
		mg/kg	0.2	<0.2	<0.2	0
	Dimetnoate	mg/kg	0.2	<0.2	<0.2	0
	Disulfoton	mg/kg	0.2	<0.2	<0.2	0
	Ethion	mg/kg	0.2	<0.2	<0.2	0
	Ethoprop	mg/kg	0.2	<0.2	<0.2	0
	Fenitrothion	mg/kg	0.2	<0.2	<0.2	0
	rensuliotnion	mg/kg	0.2	<0.2	<0.2	0
	renthion	mg/kg	0.2	<0.2	<0.2	0
	Marahaa	mg/Kg	0.2	<0.2	<0.2	0
	Netpul parettion	mg/Kg	0.2	<0.2	<0.2	0
		mg/Kg	0.2	<0.2	<0.2	0
	wevinphos (Phosarin)	mg/kg	0.2	<0.2	<0.2	0
		mg/Kg	2	<2.0	<2.0	0
		mg/Kg	0.2	<0.2	<0.2	0
	Omethoate	mg/kg	2	<2.0	<2.0	0
	Paratinion	mg/Kg	0.2	<0.2	<0.2	0
		mg/Kg	0.2	<0.2	<0.2	0
	ryiazophos	mg/Kg	0.2	<0.2	<0.2	0
	Ronnei	тпд/кд	U.2	<0.2	<0.2	U

	Terbufos	mg/kg	0.2	<0.2	<0.2	0
	Trichloronate	mg/kg	0.2	<0.2	<0.2	0
	Tetrachlorvinphos	mg/kg	0.2	<0.2	<0.2	0
	Tokuthion	mg/kg	0.2	<0.2	<0.2	0
PAH	Acenaphthene	mg/kg	0.5	<0.5	<0.5	0
	Acenaphthylene	mg/kg	0.5	<0.5	<0.5	0
	Anthracene	mg/kg	0.5	<0.5	<0.5	0
	Benzo(a)anthracene	mg/kg	0.5	<0.5	<0.5	0
	Benzo(a)pyrene	mg/kg	0.5	<0.5	<0.5	0
	Benzo(a)pyrene TEQ (lower bound) *	mg/kg	0.5	<0.5	<0.5	0
	Benzo(a)pyrene TEQ (medium bound) *	mg/kg	0.5	0.6	0.6	0
	Benzo(a)pyrene TEQ (upper bound) *	mg/kg	0.5	1.2	1.2	0
	Benzo(g,h,i)perylene	mg/kg	0.5	<0.5	<0.5	0
	Benzo(k)fluoranthene	mg/kg	0.5	<0.5	<0.5	0
	Chrysene	mg/kg	0.5	<0.5	<0.5	0
	Benzo[b+j]fluoranthene	mg/kg	0.5	<0.5	<0.5	0
	Dibenz(a,h)anthracene	mg/kg	0.5	<0.5	<0.5	0
	Fluoranthene	mg/kg	0.5	<0.5	<0.5	0
	Fluorene	mg/kg	0.5	<0.5	<0.5	0
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	<0.5	<0.5	0
	Naphthalene	mg/kg	0.5	<0.5	<0.5	0
	Naphthalene	mg/kg	0.5	<0.5	<0.5	0
	Phenanthrene	mg/kg	0.5	<0.5	<0.5	0
	Pyrene	mg/kg	0.5	<0.5	<0.5	0
	Total PAHs	mg/kg	0.5	<0.5	<0.5	0
Pesticides	Pirimiphos-methyl	mg/kg	0.2	<0.2	<0.2	0
Phenol	2.4.5-trichlorophenol	mg/kg	1	<1.0	<1.0	0
	2.4.6-trichlorophenol	mg/kg	1	<1.0	<1.0	0
	2.4-dichlorophenol	mg/kg	0.5	<0.5	<0.5	0
	2.4-dimethylphenol	mg/kg	0.5	< 0.5	<0.5	0
	2.4-dinitrophenol	mg/kg	5	<5.0	<5.0	0
	2.6-dichlorophenol	ma/ka	0.5	<0.5	<0.5	0
	2-chlorophenol	ma/ka	0.5	<0.5	<0.5	0
	2-methylphenol	mg/kg	0.2	<0.2	<0.2	0
	2-nitrophenol	mg/kg	1	<1.0	<1.0	0
	3-&4-methylphenol	ma/ka	0.4	<0.4	<0.4	0
	4.6-Dinitro-2-methylphenol	ma/ka	5	<5.0	<5.0	0
	4.6-Dinitro-o-cvclohexyl phenol	mg/kg	20	<20.0	<20.0	0
	4-chloro-3-methylphenol	ma/ka	1	<1.0	<1.0	0
	4-nitrophenol	ma/ka	5	<5.0	<5.0	0
	Dinoseb	ma/ka	20	<20.0	<20.0	0
	Pentachlorophenol	ma/ka	1	<1.0	<1.0	0
	Phenol	ma/ka	0.5	<0.5	<0.5	0
	Phenols (Total Halogenated)	ma/ka	1	<1.0	<1.0	0
	Phenois (Total Non Halogenated)	ma/ka	20	<20.0	<20.0	0
SVOCs	EPN	ma/ka	0.2	<0.2	<0.2	0
TPH	E2-NAPHTHAI ENE	ma/ka	50	71.0	94.0	28
	C6 - C9	ma/ka	20	<20.0	<20.0	0
	C10 - C14	ma/ka	20	70.0	54.0	26
	C15 - C28	ma/ka	50	540.0	590.0	.9
	C29 - C36	ma/ka	50	1200.0	1300.0	8
	C10 - C36 (Sum of total)	ma/ka	50	1810.0	1944 0	7
	C10-C16	ma/ka	50	71 O	94 N	28
	C16-C34	ma/ka	100	1400.0	1500.0	7
	C34-C40	ma/ka	100	1400.0 480 0	710 0	20
	C6 - C10	ma/ka	20	-20 0	~20.0	0
		ing/kg	20	~20.0	~20.0	0

*RPDs have only been considered where a concentration is greater than 0 times the EQL.

**High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 25 (0-10 x EQL); 25 (10-20 x EQL); 10 (> 20 x EQL)

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories.

Any methods in the row header relate to those used in the primary laboratory

Appendix A - Photographs

Photo 7: Looking west from the public reserve to Yertala Close

Photo 8: Looking north east towards the Pacific Highway. Rubbish and two stormwater pits are in the foreground

drawn	MPW		client:	Lake Macquarie	e City Council
approved	PW		project:	Preliminary Contami	nation Assessment
date	30/01/2018	сопеу -		Lot 53 DP 1162234, V	Vindale, NSW 2306
scale	NTS	A TETRA TECH COMPANY	title:	SITE PHOTO	DGRAPHS
original	A4		project no:	754-NTLEN213403	photo no: 7 & 8

Photo 9: Subsurface soil at location LMCC-W2 location

Photo 10: Frazer Gully looking east

drawn	MPW	client:	Lake Macquarie	e City Council
approved	PW	project:	Preliminary Contamir	nation Assessment
date	30/01/2018		Lot 53 DP 1162234, V	Vindale, NSW 2306
scale	NTS	title:	SITE PHOTO	DGRAPHS
original	A4	project no:	754-NTLEN213403	photo no: 9 & 10

Appendix B – Historical Titles Search

Cadastral Records Enguiry Report : Lot 53 DP 1162234

Copyright © Crown in right of New South Wales, 2017

and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps

Ref : Advance Legal Searchers Pty Ltd

NSW		Cadastral Records Enquiry Report: Lot 53 DRefi 1622/344 ce Legal Searchers Pty Ltd				
	REGISTRY	Locality : WINDALE		Parish : KAHIBAH		
	SERVICES	LGA : LAKE MACQUARIE		County : NORTHUMBERLAND		
		Status	Surv/Comp	Purpose		
DP656887 Lot(s): 12						
Ú 🛄 I	DP1154572	REGISTERED	SURVEY	EASEMENT		
DP1162234 Lot(s): 1, 2 39, 40, 41,	4 , 3, 4, 5, 6, 7, 8, 9 42, 43, 44, 45, 4	9, 10, 11, 12, 13, 14, 15, 16, 17, 6, 47, 48, 49, 50, 51, 52, 53	18, 19, 20, 21, 22, 23, 2	24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,	37, 38,	
	DP1/38/	HISTORICAL	SURVEY	UNRESEARCHED		
	DP1154572	REGISTERED	SURVEY	EASEMENT		
Lot(s): 38,	39, 40, 41					
	DP36433	HISTORICAL	SURVEY	UNRESEARCHED		
DP1196652 Lot(s): 4	2					
	DP609193	HISTORICAL	SURVEY	SUBDIVISION		
	DP1235894	REGISTERED	SURVEY	EASEMENT		
DP1214343 Lot(s): 3	3					
) 📃 I	DP1013486	HISTORICAL	SURVEY	ROADS ACT, 1993		

Locality : WINDALE LGA : LAKE MACQUARIE Parish : KAHIBAH

County : NORTHUMBERLAND

Plan

DP36433 DP418771 DP656887 DP726268 DP755233 DP775913 DP1162234 DP1196652 DP1214343 SURVEY SURVEY SURVEY COMPILATION COMPILATION SURVEY SURVEY SURVEY

SURVEY

Purpose

UNRESEARCHED UNRESEARCHED DEPARTMENTAL CROWN FOLIO CREATION CROWN ADMIN NO. SUBDIVISION SUBDIVISION SUBDIVISION SUBDIVISION

Caution: This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL ACTIVITY PRIOR TO SEPTEMBER 2002** you must refer to the RGs Charting and Reference Maps.

/Doc:DP 1162234 P /Rev:03-May-2011 /Sts:SC.OK /Pgs:ALL /Prt:22-Jan-2018 14:55 /Seq:1 of 6 Req:R989540

105794-8 NEWC

*OFFICE USE ONLY

Req:R989540 /Doc:DP 1162234 P /Rev:03-May-2011 /Sts:SC.OK /Pgs:ALL /Prt:22-Jan-2018 14:55 /Seq:2 of 6 Ref:advlegs /Src:P

Req:R989540 /Doc:DP 1162234 P /Rev:03-May-2011 /Sts:SC.OK /Pgs:ALL /Prt:22-Jan-2018 14:55 /Seq:3 of 6

Req:R989540 /Doc:DP 1162234 P /Rev:03-May-2011 /Sts:SC.OK /Pgs:ALL /Prt:22-Jan-2018 14:55 /Seq:4 of 6

Req:R989540 /Doc:DP 1162234 P /Rev:03-May-2011 /Sts:SC.OK /Pgs:ALL /Prt:22-Jan-2018 14:55 /Seq:5 of 6 Ref:advlegs /Src:P PLAN FORM 6 ePlan

CERTIFICATES, SIGN	ATURES AND SEALS Sheet 1 of # sheet(s)
plan of SUBDIVISION OF PART LOTS 10 & 11 DP 17387 AND LOT 344 DP 36433	DP1162234
	Registered : 2.5.2011 *
Surveyors (Practice) Regulation 2001	 SIGNATURES, SEALS and STATEMENTS of intention to dedicate public roads or to create public reserves and drainage reserves. PURSUANT TO SECTION 88B OF THE CONVEYANCING ACT 1919, AS AMENDED IT IS INTENDED TO CREATE : 1. EASEMENT FOR SUPPORT, OVERHANG & REPAIRS 0.3 WIDE 2. EASEMENT FOR SUPPORT, OVERHANG & REPAIRS 0.4 WIDE 3. EASEMENT FOR ELECTRICITY AND OTHER PURPOSES 4.77 WIDE 4. EASEMENT FOR DRAINAGE OF WATER OVER EXISTING LINE OF PIPES (APPROXIMATE POSITION) 5. EASEMENT FOR SERVICES OVER EXISTING LINE OF CABLES (APPROXIMATE POSITION) 6. RESTRICTION AS TO USER 7. RESTRICTION AS TO USER
Date : File Number : Office : ,	IT IS INTENDED TO DEDICATE OPALA CLOSE, YERTALA CLOSE, DOONGARA CLOSE*AND LOT 54 TO THE PUBLIC AS ROAD
Subdivision Certificate I certify that the provisions of s.109J of the Environmental Planning and Assessment Act 1979 have been satisfied in relation to the proposed	* SUBJECT TO THE EXISTING EASEMENT FOR WATERMAIN 2.34 WIDE (DP 604308) AND EASEMENT FOR PIPELINE 3.66 WIDE (DP 507389)
Subdivision set out herein * (insert "subdivision" or "new road") * Authorised Person/General Manager/Accredited Certifier Consent Authority : Lake Macquarie Council Date of Endorsement : 23 Occember 2010 Accreditation No. : Subdivision Certificate No : <u>Sc / 96/2010</u> File No. : <u>DA / 429 / 1997</u>	SIGNED SEALED AND DELIVERED for and on behalf of EnergyAustralia by KATHERINE MARGARET GUNTON its duly constituted Attorney pursuant to Power of Attorney registered Book 4528 No. 401
* Delete whichever is inopplicable	Use PLAN FORM 6A for additional certificates, signatures, and seals

Req:R989540 /Doc:DP 1162234 P /Rev:03-May-2011 /Sts:SC.OK /Pgs:ALL /Prt:22-Jan-2018 14:55 /Seq:6 of 6 Ref:advlegs /Src:P}A (Annexure Sheet)

· · · · · · · · · · · · · · · · · · ·	
PLAN OF SUBDIVISION OF PART LOTS 10 & 11 DP 17387 AND LOT 344 DP36433	DP1162234
	* Registered: (2.5.2011
Subdivision Certificate No: SC/96/2010	Date of Endorsement: 23.12.2010
· · ·	
SIGNED BY ME BRETT LAURENCE WOOD AS A DELEGATE OF THE NEW SOUTH WALES LAND AND HOUSING CORPORATION AND I HEREBY CERTIFY THAT I HAVE NO NOTICE	
OF REVOCATION OF SUCH DELEGATION.	
,	
	· · · · · · · · · · · · · · · · · · ·

.

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 53/1162234

SEARCH DATE	TIME	EDITION NO	DATE
22/1/2018	2:52 PM	2	3/9/2016

LAND

LOT 53 IN DEPOSITED PLAN 1162234 AT WINDALE LOCAL GOVERNMENT AREA LAKE MACQUARIE PARISH OF KAHIBAH COUNTY OF NORTHUMBERLAND TITLE DIAGRAM DP1162234

FIRST SCHEDULE

NEW SOUTH WALES LAND AND HOUSING CORPORATION

SECOND SCHEDULE (2 NOTIFICATIONS)

- 1 LAND EXCLUDES MINERALS AND IS SUBJECT TO RESERVATIONS AND
- CONDITIONS IN FAVOUR OF THE CROWN SEE CROWN GRANT(S) 2 AK693151 EASEMENT FOR WATERMAINS 6 WIDE AND VARIABLE AFFECTING THE PART DESIGNATED (X) IN DP1162234

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

advlegs

PRINTED ON 22/1/2018

Obtained from NSW LRS on 22 January 2018 01:52 PM AEST

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register.

© Office of the Registrar-General 2018

Appendix C – Aerial Photographs

	Approximate S		
drawn	MPW	client: Lake Macquarie	City Council
approved		project: Preliminary Contamin	ation Assessment
date	30/01/2018	Lot 53 DP 1162234, W	/indale, NSW 2306
scale	NTS	title: 1993 AERIAL PH	IOTOGRAPH
original size	A4	project no: 754-NTLEN213403	figure no: 1993

drawn	Approximate S	Site Boundary	client:	Lake Macquarie	e City Council
approved		cc 🏊	project:	Preliminary Contamir	nation Assessment
date	30/01/2018			Lot 53 DP 1162234, V	Vindale, NSW 2306
scale	NTS		title:	1984 AERIAL PI	HOTOGRAPH
original size	A4		project no:	754-NTLEN213403	figure no: 1984

1

Г

	Approximate S				<image/>
drawn	MPW		client:	Lake Macquarie	e City Council
approved			project:	Preliminary Contamir	nation Assessment
date	30/01/2018			Lot 53 DP 1162234, V	Vindale, NSW 2306
scale	NTS	A TETHA TECH COMPANY	title:	1976 AERIAL PI	HOTOGRAPH
original size	A4		project no:	754-NTLEN213403	figure no: 1976

	Approximate S	ite Boundary		<image/>
drawn	MPW		Client: Lake Macquarie	City Council
approved			project: Preliminary Contamir	ation Assessment
date	30/01/2018		Lot 53 DP 1162234, W	/indale, NSW 2306
scale	NTS		1965 AERIAL P	HOTOGRAPH
original size	A4		project no: 754-NTLEN213403	figure no: 1965

25 January 2018

COFFEY SERVICES AUSTRALIA PTY LTD 19 Warabrook Blvd WARABROOK NSW 2304 Our Ref:115643 Your Ref: NTLEN213403:65364 ABN 81 065 027 868

SECTION 149 PLANNING CERTIFICATE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979

Fee Paid: 133.00

Receipt No: 9648004

Receipt Date: 24 January 2018

DESCRIPTION OF LAND

Address: 2B Yertala Close, WINDALE NSW 2306

Lot Details: Lot 53 DP 1162234

Parish: Kahibah

County: Northumberland

For: MORVEN CAMERON GENERAL MANAGER

Our Ref: Your Ref:

ADVICE PROVIDED IN ACCORDANCE WITH SECTION 149(2)

1 Names of Relevant Planning Instruments and Development Control Plans

(1) The name of each environmental planning instrument that applies to the carrying out of development on the land.

Lake Macquarie Local Environmental Plan 2014

State Environmental Planning Policy No. 21 – Caravan Parks

State Environmental Planning Policy No. 19 - Bushland in Urban Areas

State Environmental Planning Policy (Infrastructure) 2007

State Environmental Planning Policy No. 33 – Hazardous and Offensive Development

State Environmental Planning Policy No. 55 - Remediation of Land

State Environmental Planning Policy No. 64 – Advertising and Signage

State Environmental Planning Policy No. 44 - Koala Habitat Protection

State Environmental Planning Policy No. 62 - Sustainable Aquaculture

State Environmental Planning Policy No. 36 – Manufactured Homes Estates (except as maybe excluded by Clause 6 of the SEPP)

State Environmental Planning Policy No. 50 - Canal Estate Development

State Environmental Planning Policy (Exempt and Complying Development Codes) 2008

State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007

State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007

State Environmental Planning Policy (State Significant Precincts) 2005

State Environmental Planning Policy (State and Regional Development) 2011

State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004

State Environmental Planning Policy (Affordable Rental Housing) 2009

State Environmental Planning Policy - (Housing for Seniors or People with a Disability) 2004 (This SEPP applies to the land to the extent provided by Clause 4 of the SEPP)

State Environmental Planning Policy (Educational Establishments and Child Care Facilities) 2017

State Environmental Planning Policy (Vegetation in Non-Rural Areas) 2017

(2) The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Secretary has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved).

Lake Macquarie Local Environmental Plan 2014 (Amendment No. F2014/01451)

Draft State Environmental Planning Policy (Infrastructure) Amendment (Review) 2016

Draft Coastal Management State Environmental Planning Policy 2016 (part of lot)

(3) The name of each development control plan that applies to the carrying out of development on the land.

Lake Macquarie Development Control Plan 2014

(4) In this clause, proposed environmental planning instrument includes a planning proposal for a Local Environmental Plan or a Draft environmental planning instrument.

2 Zoning and land use under relevant Local Environmental Plans

- (1) The following answers (a) to (h) relate to the instrument (see 1(1) above).
- (a) (i) The identity of the zone applying to the land.
 - E2 Environmental Conservation

under Lake Macquarie Local Environmental Plan 2014

(ii) The purposes for which the Instrument provides that development may be carried out within the zone without the need for development consent.

Exempt development as provided in Schedule 2; Home occupations

(iii) The purposes for which the Instrument provides that development may not be carried out within the zone except with development consent.

Bed and breakfast accommodation; Boat sheds; Building identification signs; Business identification signs; Car parks; Community facilities; Dual occupancies (attached); Dwelling houses; Eco-tourist facilities; Emergency services facilities; Environmental facilities; Environmental protection works; Flood mitigation works; Home-based child care; Home businesses; Information and education facilities; Recreation areas; Roads; Water recreation structures

(iv) The purposes for which the Instrument provides that development is prohibited within the zone.

Business premises; Hotel or motel accommodation; Industries; Multi dwelling housing; Recreation facilities (major); Residential flat buildings; Restricted Premises; Retail premises; Seniors housing; Service stations; Warehouse or distribution centres; and any other development not specified in item (ii) or (iii)

- (i) The identity of the zone applying to the land.
 - R2 Low Density Residential

under Lake Macquarie Local Environmental Plan 2014

(ii) The purposes for which the Instrument provides that development may be carried out within the zone without the need for development consent.

Exempt development as provided in Schedule 2; Home-based child care; Home occupations

(iii) The purposes for which the Instrument provides that development may not be carried out within the zone except with development consent.

Bed and breakfast accommodation; Boarding houses; Boat sheds; Building identification signs; Business identification signs; Centre-based child care facilities; Community facilities; Dual occupancies; Dwelling houses; Emergency services facilities; Environmental facilities; Environmental protection works; Exhibition homes; Exhibition villages; Flood mitigation works; Group homes; Health consulting rooms; Home businesses; Home industries; Hostels; Kiosks; Neighbourhood shops; Places of public worship; Recreation areas; Respite day care centres; Roads; Secondary dwellings; Semi-detached dwellings; Seniors housing; Sewage reticulation systems; Sewage treatment plants; Shop top housing; Water recreation structures; Water recycling facilities; Water supply systems

(iv) The purposes for which the Instrument provides that development is prohibited within the zone.

Any other development not specified in item (ii) or (iii)

- (i) The identity of the zone applying to the land.
 - RE1 Public Recreation

under Lake Macquarie Local Environmental Plan 2014

(ii) The purposes for which the Instrument provides that development may be carried out within the zone without the need for development consent.

Exempt development as provided in Schedule 2

(iii) The purposes for which the Instrument provides that development may not be carried out within the zone except with development consent.

Amusement centres; Animal boarding or training establishments; Boat sheds; Camping grounds; Car parks; Caravan parks; Cemeteries; Charter and tourism boating facilities; Centre-based child care facilities; Community facilities; Crematoria; Educational establishments; Emergency services facilities; Entertainment facilities; Environmental facilities; Environmental protection works; Flood mitigation works; Function centres; Information and education facilities; Kiosks; Marinas; Markets; Places of public worship; Recreation areas; Recreation facilities (indoor); Recreation facilities (major); Recreation facilities (outdoor); Registered clubs; Respite day care centres; Restaurants or cafes; Roads; Sewage reticulation systems; Sewage treatment plants; Signage; Water recreation structures; Water recycling facilities; Water supply systems; Wharf or boating facilities

(iv) The purposes for which the Instrument provides that development is prohibited within the zone.

Any development not specified in item (ii) or (iii)

- NOTE: The advice in sections (a) above relates only to restrictions that apply by virtue of the zones indicated. The Lake Macquarie LEP 2014 includes additional provisions that require development consent for particular types of development, or in particular circumstances, irrespective of zoning.
- (b) Whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed.

Yes, there are development standards applying to the land that fix minimum land dimensions for the erection of a dwelling house.

Minimum lot size of 40 ha. Refer to Clause 4.2A of LMLEP 2014 for further information.

(c) Whether the land includes or comprises critical habitat.

No

(d) Whether the land is in a conservation area (however described).

Yes

(e) Whether an item of environmental heritage (however described) is situated on the land.

Local Environmental Plan 2014 Schedule 5 Part 1 Heritage Items

There are no items listed for this land under Local Environmental Plan 2014 Schedule 5 Part 1 Heritage items.

Local Environmental Plan 2014 Schedule 5 Part 2 Heritage conservation areas

There are no items listed for this land under Local Environmental Plan 2014 Schedule 5 Part 2 Heritage conservation areas.

Local Environmental Plan 2014 Schedule 5 Part 3 Archaeological sites

There are no items listed for this land under Local Environmental Plan 2014 Schedule 5 Part 3 Archaeological sites.

Local Environmental Plan 2014 Schedule 5 Part 4 Landscape Items

There are no items listed for this land under Local Environmental Plan 2014 Schedule 5 Part 4 Landscape items.

Local Environmental Plan 2004 Schedule 4 Part 1 Heritage Items

There are no heritage items listed for this land within Local Environmental Plan 2004 Schedule 4 Part 1.

Local Environmental Plan 2004 Part 11 Clause 150 Environmental Heritage

There are no heritage items listed for this land within Local Environmental Plan 2004 Part 11 Clause 150 – South Wallarah Peninsula.

NOTE: An item of environmental heritage, namely Aboriginal heritage, listed within the Aboriginal Heritage Information Management System (AHIMS), may affect the land. The applicant should contact the Office of Environment and Heritage (OEH) for more information.

- (2) The following answers relate to the Draft Instrument (see 1(2) above).
- (a) Nil

NOTE: The advice in section (a) above relates only to restrictions that apply by virtue of the zones indicated. The Draft instrument may include additional provisions that require development consent for particular types of development, or in particular circumstances, irrespective of zoning.

(b) Whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed.

There are no development standards applying to the land that fix minimum land dimensions for the erection of a dwelling house.

(c) Whether the land includes or comprises critical habitat.

No

(d) Whether the land is in a conservation area (however described).

No

(e) Whether an item of environmental heritage (however described) is situated on the land.

No

3 Complying development

The extent to which the land is land on which complying development may be carried out under each of the codes for complying development because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), and 1.18 (1) (c3) and 1.19 of *State Environmental Planning Policy (Exempt and Complying Development Codes) 2008*.

General Housing Code

Note: If a lot is not specifically listed in this section then, complying development

under the General Housing Code **MAY** be carried out on any part of that lot.

Lot 53 DP 1162234

Complying development under the General Housing Code **MAY NOT** be carried out on part of the lot because the lot is partly affected by specific land exemptions.

Note: If the lot is only affected by the "heritage conservation area" exemption, then complying development under the General Housing Code **MAY** be carried out on the lot if the development is a detached outbuilding or swimming pool.

The lot is affected by the following specific land exemptions: The land is reserved for a public purpose in an environmental planning instrument.

The land is within an environmentally sensitive area being land within an area of high aboriginal cultural significance.

The land is excluded land being land identified by an environmental planning instrument as being environmentally sensitive or within an ecologically sensitive area.

•

Housing Alterations Code

Note: If a lot is not specifically listed in this section then, complying development under the Housing Alterations Code **MAY** be carried out on any part of that lot.

Lot 53 DP 1162234

Complying development under the Housing Alterations Code **MAY NOT** be carried out on part of the lot because the lot is partly affected by specific land exemptions.

The lot is affected by the following specific land exemptions:

The land is within an environmentally sensitive area being land within an area of high aboriginal cultural significance.

•

Commercial and Industrial Alterations Code

Note: If a lot is not specifically listed in this section then, complying development under the Commercial and Industrial Alterations Code **MAY** be carried out on any part of that lot.

Lot 53 DP 1162234

Complying development under the Commercial and Industrial Alterations Code **MAY NOT** be carried out on part of the lot because the lot is partly affected by specific

land exemptions.

The lot is affected by the following specific land exemptions:

The land is within an environmentally sensitive area being land within an area of high aboriginal cultural significance.

•

Commercial and Industrial (New Buildings and Additions) Code

Note: If a lot is not specifically listed in this section then, complying development under the Commercial and Industrial (New Buildings and Additions) Code **MAY** be carried out on any part of that lot.

Lot 53 DP 1162234

Complying development under the Commercial and Industrial (New Buildings and Additions) Code **MAY NOT** be carried out on part of the lot because the lot is partly affected by specific land exemptions.

The lot is affected by the following specific land exemptions:

The land is reserved for a public purpose in an environmental planning instrument.

The land is within an environmentally sensitive area being land within an area of high aboriginal cultural significance.

The land is excluded land being land identified by an environmental planning instrument as being environmentally sensitive or within an ecologically sensitive area.

•

Subdivisions Code

Note: If a lot is not specifically listed in this section then, complying development under the Subdivisions Code **MAY** be carried out on any part of that lot.

Lot 53 DP 1162234

Complying development under the Subdivisions Code **MAY NOT** be carried out on part of the lot because the lot is partly affected by specific land exemptions.

The lot is affected by the following specific land exemptions:

The land is within an environmentally sensitive area being land within an area of high aboriginal cultural significance.

•

Rural Housing Code

Note: If a lot is not specifically listed in this section then, complying development under the Rural Housing Code **MAY** be carried out on any part of that lot.

Lot 53 DP 1162234

Complying development under the Rural Housing Code **MAY NOT** be carried out on part of the lot because the lot is partly affected by specific land exemptions.

Note: If the lot is only affected by the "heritage conservation area" exemption, then complying development under the Rural Housing Code **MAY** be carried out on the lot if the development is a detached outbuilding or swimming pool.

The lot is affected by the following specific land exemptions: The land is reserved for a public purpose in an environmental planning instrument.

The land is within an environmentally sensitive area being land within an area of high aboriginal cultural significance.

The land is excluded land being land identified by an environmental planning instrument as being environmentally sensitive or within an ecologically sensitive area.

•

General Development Code

Note: If a lot is not specifically listed in this section then, complying development under the General Development Code **MAY** be carried out on any part of that lot.

Lot 53 DP 1162234

Complying development under the General Development Code **MAY NOT** be carried out on part of the lot because the lot is partly affected by specific land exemptions.

The lot is affected by the following specific land exemptions:

The land is within an environmentally sensitive area being land within an area of high aboriginal cultural significance.

•

Demolition Code

Note: If a lot is not specifically listed in this section then, complying development under the Demolition Code **MAY** be carried out on any part of that lot.

Lot 53 DP 1162234

Complying development under the Demolition Code **MAY NOT** be carried out on part of the lot because the lot is partly affected by specific land exemptions.

The lot is affected by the following specific land exemptions:

The land is within an environmentally sensitive area being land within an area of

high aboriginal cultural significance.

•

Fire Safety Code

Note: If a lot is not specifically listed in this section then, complying development under the Fire Safety Code **MAY** be carried out on any part of that lot.

Lot 53 DP 1162234

Complying development under the Fire Safety Code **MAY NOT** be carried out on part of the land because the lot is partly affected by specific lot exemptions.

The lot is affected by the following specific land exemptions:

The land is within an environmentally sensitive area being land within an area of high aboriginal cultural significance.

•

4 Coastal Protection

Whether or not the land is affected by the operation of section 38 or 39 of the Coastal Protection Act 1979, but only to the extent that the Council has been so notified by the Department of Public Works.

No

4A Information relating to beaches and coasts

1 Whether an order has been made under Part 4D of the Coastal Protection Act 1979 in relation to temporary coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land), except where the council is satisfied that such an order has been fully complied with.

Nil

2 (a) Whether the council has been notified under section 55X of the Coastal Protection Act 1979 that temporary coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land)

Nil

(b) If works have been so placed — whether the council is satisfied that the works have been removed and the land restored in accordance with that Act.

Nil

4B Annual charges under Local Government Act 1993 for coastal protection services that relate to existing coastal protection works

Whether the owner (or any previous owner) of the land has consented in writing to the land being subject to annual charges under section 496B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works (within the meaning of section 553B of that Act).

Nil

NOTE: "Existing coastal protection works" are works to reduce the impact of coastal hazards on land (such as seawalls, revetments, groynes and beach nourishment) that existed before the commencement of section 553B of the Local Government Act 1993.

5 Mine subsidence

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of section 15 of the Mine Subsidence Compensation Act 1961.

The land is within a proclaimed Mine Subsidence District under the *Mine Subsidence Compensation Act 1961*. The approval of the Mines Subsidence Board is required for all subdivision and building, except for certain minor structures. Surface development controls are in place to prevent damage from old, current, or future mining. It is strongly recommended prospective purchasers consult with the Mine Subsidence Board regarding mine subsidence and any surface development guidelines. The Board can assist with information, mine subsidence, and advise whether existing structures comply with the requirements of the *Act*.

6 Road widening and road realignment

Whether the land is affected by any road widening or realignment under:

(a) Division 2 of Part 3 of the Roads Act 1993.

No

(b) any environmental planning instrument.

No

(c) any resolution of the Council.

No, other road widening proposals may affect this land and if so, will be noted on the SECTION 149(5) certificate.

7 Council and other public authority policies on hazard risk restrictions

Whether or not the land is affected by a policy:

- (i) adopted by the Council, or
- (ii) adopted by any other public authority and notified to the Council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the Council,

that restricts the development of the land because of the likelihood of:

(a) land slip or subsidence

Yes

Relevant sections of Lake Macquarie Development Control Plan 2014 and Lake Macquarie Development Control Plan No.1 apply when development is proposed on land covered by Council's geotechnical areas map. The map is available for viewing at the Council. If you require any further clarification on the policy and how it may affect any possible development contact the Council on 02 4921 0333.

(b) bushfire

Yes

(c) tidal inundation

No

(d) acid sulfate soils

Yes

Relevant sections of Lake Macquarie Development Control Plan 2014 and Lake Macquarie Development Control Plan No.1 apply when development is proposed on land covered by the Acid Sulfate Soils Map. If you require any further clarification on the policy and how it may affect any possible development contact the Council on 02 4921 0333.

(e) contaminated or potentially contaminated land

Council has adopted a policy that may restrict the development of Contaminated or Potentially Contaminated land. This policy is implemented when zoning, development, or land use changes are proposed. Council does not hold sufficient information about previous use of the land to determine whether the land is contaminated. Consideration of Council's adopted Policy located in the applicable DCP noted in Clause 1(3) above, and the application of provisions under relevant State legislation is recommended.

(f) any other risk (other than flooding).

No
NOTE: The absence of a council policy restricting development of the land by reason of a particular natural hazard does not mean that the risk from that hazard is non-existent.

7A Flood related development controls information

(1) Whether or not development on that land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls.

Yes

(2) Whether or not development on that land or part of the land for any other purpose is subject to flood related development controls.

Yes

(3) Words and expressions in this clause have the same meanings as in the standard instrument set out in the *Standard Instrument (Local Environmental Plans)* Order 2006.

ADVICE: Further information on the development restriction mentioned, may be obtained from Council upon application for a "Flood Certificate" or "Flood/Tidal Inundation Certificate".

8 Land reserved for acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in Clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the Act.

Yes

9 Contributions Plans

The name of each contributions plan applying to the land.

Lake Macquarie City Council Development Contributions Plan - Charlestown Contributions Catchment - 2015

9A Biodiversity Certified Land

This land is not biodiversity certified land under Part 8 of the Biodiversity Conservation Act 2016.

10 Biodiversity stewardship sites

The land is not a biodiversity stewardship site under a biodiversity stewardship agreement under Part 5 of the Biodiversity Conservation Act 2016.

10A Native vegetation clearing set asides

The land does not contain a set aside area under section 60ZC of the Local Land Services Act 2013.

11 Bush Fire Prone Land

Note: If a lot is not specifically listed in this section then, **NONE** of that lot is bush fire prone land.

Lot 53 DP 1162234 - SOME of the land is bush fire prone land.

NOTE: The Lake Macquarie Bush Fire Prone Land Map can be inspected at Council's Administration Building during normal office hours or contact Council on 02 4921 0333.

12 Property Vegetation Plans

The land IS NOT subject to a property vegetation plan approved under Part 4 of the Native Vegetation Act 2003 (and that continues in force).

NOTE: The advice provided in this section is based on notification by the Hunter Local Land Services of the approval of a plan. Further information about property vegetation plans should be obtained from that Authority.

13 Orders under Trees (Disputes Between Neighbours) Act 2006

Has an order been made under the Trees (Disputes Between Neighbours) Act 2006 to carry out work in relation to a tree on the land (but only if the council has been notified of the order).

The land IS NOT subject to an order made under the Trees (Disputes Between Neighbours) Act 2006 to carry out work in relation to a tree on the land.

14 Directions under Part 3A

If there is a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect, a statement to that effect identifying the provision that does not have effect.

Nil

15 Site compatibility certificates and conditions for seniors housing

(a) Whether there is a current site compatibility certificate (seniors housing), of which the council is aware, in respect of proposed development on the land.

Council is not aware of any site capability certificate for any proposed development on the land.

(b) Any terms of a kind referred to in clause 18 (2) of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 that have been imposed as a condition of consent to a development application granted after 11 October 2007 in respect of the land.

Nil

16 Site compatibility certificates for infrastructure

Whether there is a valid site compatibility certificate (infrastructure, schools or TAFE establishments), of which the council is aware, in respect of proposed development on the land.

Council is not aware of any site capability certificate for any proposed development on the land.

17 Site compatibility certificates and conditions for affordable rental housing

(1) Whether there is a current site compatibility certificate (affordable rental housing), of which the council is aware, in respect of proposed development on the land.

Council is not aware of any site capability certificate for any proposed development on the land.

(2) Any terms of a kind referred to in clause 17 (1) or 38 (1) of *State Environmental Planning Policy (Affordable Rental Housing) 2009* that have been imposed as a condition of consent to a development application in respect of the land.

Nil

18 Paper subdivision information

(1) The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.

Nil

(2) The date of any subdivision order that applies to the land.

Not Applicable

Note Words and expressions used in this clause have the same meaning as they have in Part 16C of Environmental Planning and Assessment Regulation 2000.

19 Site verification certificates

Whether there is a current site verification certificate, of which the council is aware, in respect of the land.

No

(a) The matter certified by the certificate

Not Applicable

(b) The date on which the certificate ceases to be current

Not Applicable

(c) A copy of the certificate (if any) may be obtained from the head office of the

Department of Planning and Infrastructure.

Note A site verification certificate sets out the Secretary's opinion as to whether the land concerned is or is not biophysical strategic agricultural land or critical industry cluster land—see Division 3 of Part 4AA of State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007.

20 Loose-fill asbestos insulation

If the land includes any residential premises (within the meaning of Division 1A of Part 8 of the *Home Building Act 1989*) that are listed on the register that is required to be maintained under that Division

No. Council **has not** been notified that a residential premises erected on this land has been identified in the NSW Fair Trading Loose-Fill Asbestos Insulation Register as containing loose-fill asbestos ceiling insulation.

NOTE: The following matters are prescribed by section 59 (2) of the Contaminated Land Management Act 1997 as additional matters to be specified in a planning certificate:

Matters arising under the Contaminated Land Management Act 1997 (s59 (2))

(a) The land to which the certificate relates is significantly contaminated land within the meaning of that Act - if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

No

(b) The land to which the certificate relates is subject to a management order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No

(c) The land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act - if it is the subject of such an approved proposal at the date when the certificate is issued,

No

(d) The land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No

(e) The land to which the certificate relates is the subject of a site audit statement within the meaning of that Act - if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

No

NOTE: Section 26 of the Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009 provides that a planning certificate must include advice about any exemption under section 23 or authorisation under section 24 of the Act if the council is provided with a copy of the exemption or authorisation by the Co-ordinator General under that Act.

Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009

Council has not been provided with an exemption or authorisation by the Co-ordinator General under the Act.

ADVICE PROVIDED IN ACCORDANCE WITH SECTION 149(5)

NOTE: SECTION 149(6) OF THE ACT STATES THAT A COUNCIL SHALL NOT INCUR ANY LIABILITY IN RESPECT OF ANY ADVICE PROVIDED IN GOOD FAITH PURSUANT TO SECTION 149(5).

21 Clearing and lopping of trees

The land is NOT affected by the requirements, under Lake Macquarie Local Environmental Plan 2014 and Lake Macquarie Local Environmental Plan 2004, for the clearing and lopping of trees.

22 Easements

The land is NOT affected by a proposed easement in favour of Lake Macquarie City Council.

As to affectation by existing easements, a search of the relevant Title of the land should be undertaken.

23 Outstanding Notice/Order

The land is NOT AFFECTED by an outstanding notice/order issued under either:

Notice/Order – Local Government Act, 1993

Notice/Order – Environmental Planning & Assessment Act, 1979

Notice/Order - Swimming Pools Act, 1992

Notice/Order – Noxious Weeds Act, 1993

Notice/Order – Protection of the Environment Operations Act, 1997

24 Earthquake

An earthquake was experienced throughout most of the city area on 28/12/89. Prospective purchasers should make their own enquiries as to whether buildings/structures on the land sustained any structural damage.

25 Lifestyle 2030

Council has prepared a strategy to provide direction for future land use planning, urban design and development of the City until the year 2030. A copy of "Lifestyle 2030 - A Strategy for Our Future" is available from Council.

26 Voluntary Planning Agreement

The land is not affected by a Voluntary Planning Agreement.

Attachments:

Land Zoning Map

Land Zoning Map

Appendix E - Chain of Custody Documentation and Laboratory Certificates of Analysis

coffe	ey >	Consign Report I Invoices	ing Office: Results to: to:	g Office: WARABROOK sults to: Sean. blackford o: Wara-GEZ-ADMIN.					Mobile: 0418 549 796 Email: sean. blackford @ Phone: 0434 376 146 Email: Macheal P wright						@coffey			
roject No: 🙏	TLEN213403 Task	No: LAB				Alexandre V.	Analysis Request Section											
roject Name:	LMCC - WINDALE Labo	ratory: COX	EFINS	ma-	r in in	and a					//	1	//	7		///	111	1
ampler's Nam	e: S. BLACKFORD Proje	ect Manager:	P. WR	CICHT		1111			/		//	//	//	1	1	11	1/1	t
pecial Instruct	ions:							2			//	//	//	//	/		//	
ab No.	Sample ID	Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)		SXP	JY/							//		ES
	LMCC-WI	11/1	PM	SOIL	7	87d	X	X		\int	ſ	ſſ		Í				
	QC1	Ĺ	T	1	T	L	X	×										
~																		
-							15											
	12																	
an a	RELINQUISHED BY				REC	EIVED BY					_	Sample	Recei	pt Adv	ice: (L	ab Use Onl	ly)	
ame: Som	J BLACKFEKINDate: 12/0	1/17 =	Name:	SUE			Date:	12/1	18	2		All Sam	ples Re	ecieved	d in Go	od Conditio	on	
offey Environr	nents Time:	/	Compar	ıy:			Time:	2.	307	M		All Doci	umenta	ation is	s in Pro	per Order		
ame:	Date:	1	Name:	Amy			Date:	15/1	118			Sample	s Rece	ived Pr	operly	Chilled		
	Time:		Company: ended (a 5 55 7 97 Time					a .				Lah Re	f/Batch	No				

The start

Melbourne Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brishane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

web : www.eurofins.com.au

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com

Sample Receipt Advice

Company name:

Coffey Environments P/L N'castle

Contact name:	Sean Blackford
Project name:	LMCC-WINDALE
Project ID:	NTLEN213403
COC number:	5465
Turn around time:	5 Day
Date/Time received:	Jan 12, 2018 2:30 PM
Eurofins mgt reference:	580387

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \checkmark Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 19.3 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \times Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- Custody Seals intact (if used). N/A

Contact notes

If you have any questions with respect to these samples please contact:

Mary Makarios on Phone : +61 3 8564 5000 or by e.mail: MaryMakarios@eurofins.com

Results will be delivered electronically via e.mail to Sean Blackford - sean.blackford@coffey.com.

Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

38 Years of Environmental Analysis & Experience

🔅 eurofins						Melbourne 2-5 Kingston Town Close	Sydney Unit F3, Building F 16 Mars Road	Brisbane 1/21 Smallwood Place Murarria OL D 4172	Perth 2/91 Leach Highway Kowdde WA 6105			
			mgt		ABN– 50 005 (e.mail : Enviro)85 521 Sales@	eurofins	.com	Phone : +61 3 8564 5000 NATA # 1261 Sito # 1254 8 14271	Lane Cove West NSW 2066 Phone : +61 2 9900 8400	Phone : +61 7 3902 4600 NATA # 1261 Site # 2079	Phone : +61 8 9251 9600 4 NATA # 1261 Sito # 22736
					web . www.eu	UIIIIS.CC	ini.au		Sile # 1254 & 1427 1	NATA # 1201 Sile # 10217		Sile # 23130
Co Ad	Company Name: Coffey Environments P/L N'castle Address: Lot 101, 19 Warabrook Boulevard Warabrook NSW 2304		Order No. Report #: Phone: Fax:		der Ne port # one: x:	2: 580387 02 4016 2300 02 4016 2380		Received: Due: Priority: Contact Name:	Jan 12, 2018 2:30 PM Jan 19, 2018 5 Day Sean Blackford			
Project Name:LMCC-WINDALEProject ID:NTLEN213403										Eurofins	s mgt Analytical Serv	ices Manager : Mary Makarios
Sample Detail					Eurofins mgt Suite B14	Moisture Set	Eurofins mgt Suite B7A					
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271		Х	Х	Х				
Sydr	ey Laboratory	- NATA Site # 1	8217 20794									
Perti	h Laboratory - N	ATA Site # 237	736									
External Laboratory												
No	Sample ID	Sample Date	Sampling	Matrix	LAB ID							
1	LMCC-W1	Jan 11, 2018		Soil	M18-Ja08407	x	x	x				
2	QC1	Jan 11, 2018		Soil	M18-Ja08408	х	х	x				
Test	Counts	· · ·	•			2	2	2				

Certificate of Analysis

Coffey Environments Pty Ltd Newcastle Lot 101, 19 Warabrook Boulevard Warabrook NSW 2304

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Sean Blackford

Report Project name Project ID Received Date **580387-S** LMCC-WINDALE NTLEN213403 Jan 12, 2018

Client Sample ID			LMCC-W1	QC1
Sample Matrix			Soil	Soil
Eurofins mgt Sample No.			M18-Ja08407	M18-Ja08408
Date Sampled			Jan 11, 2018	Jan 11, 2018
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPM Fract	tions			
TRH C6-C9	20	mg/kg	< 20	< 20
TRH C10-C14	20	mg/kg	70	54
TRH C15-C28	50	mg/kg	540	590
TRH C29-C36	50	mg/kg	1200	1300
TRH C10-36 (Total)	50	mg/kg	1810	1944
втех				
Benzene	0.1	mg/kg	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	112	95
Total Recoverable Hydrocarbons - 2013 NEPM Fract	tions			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20
TRH >C10-C16	50	mg/kg	71	94
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	71	94
TRH >C16-C34	100	mg/kg	1400	1500
TRH >C34-C40	100	mg/kg	480	710
Polycyclic Aromatic Hydrocarbons				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5

Client Sample ID			LMCC-W1	QC1
Sample Matrix			Soil	Soil
Eurofins I mot Sample No			M18-Ja08407	M18-Ja08408
Data Sampled			lop 11, 2019	lon 11, 2019
	1.05		Jan 11, 2010	Jan 11, 2010
Test/Reference	LOR	Unit		
Polycyclic Aromatic Hydrocarbons				
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5
I otal PAH*	0.5	mg/kg	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	83	72
p-lerphenyl-d14 (surr.)	1	%	81	74
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05
	0.05	mg/kg	< 0.05	< 0.05
	0.05	mg/kg	< 0.05	< 0.05
	0.05	mg/kg	< 0.05	< 0.05
Endosultan sulphate	0.05	mg/kg	< 0.05	< 0.05
	0.05	mg/kg	< 0.05	< 0.05
Endrin aldenyde	0.05	mg/kg	< 0.05	< 0.05
	0.05	mg/kg	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05
	0.05	mg/kg	< 0.05	< 0.05
	0.05	mg/kg	< 0.05	< 0.05
Mathamathan	0.05	mg/kg	< 0.05	< 0.05
Tevenhene	0.05	mg/kg	< 0.05	< 0.05
Advise and Dialdrin (Tatal)*	0.05	mg/kg	< 1	< 1
	0.05	mg/kg	< 0.05	< 0.05
	0.05	mg/kg	< 0.05	< 0.05
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1
Dibutylebloropdate (surr.)	1	0/.	101	142
Tetrachloro-m-xylene (surr.)	1	70 0/2	1/13	60
Organonhosphorus Pesticides		70	143	00
	0.2	malka	- 0.2	- 0.2
Azimphos-methyl Relator	0.2	mg/kg	< 0.2	< 0.2
Chlorfenvinnhos	0.2	mg/kg	< 0.2	< 0.2
Chlorovrifos	0.2	mg/kg	~ 0.2	< 0.2
Chlorovrifos-methyl	0.2	ma/ka	< 0.2	< 0.2
Coumanhos	0.2	mg/kg	~ 0.2	< 0.2
Demeton-S	02	ma/ka	<02	~ 0.2
Demeton-O	0.2	ma/ka	~ 0.2	~ 0.2
Diazinon	0.2	ma/ka	~ 0.2	~ 0.2
Dichloryos	0.2	ma/ka	< 0.2	< 0.2
Dimethoate	0.2	ma/ka	< 0.2	< 0.2
	U.L			

Client Sample ID			LMCC-W1	QC1
Sample Matrix			Soil	Soil
Eurofins mgt Sample No.			M18-Ja08407	M18-Ja08408
Date Sampled			Jan 11, 2018	Jan 11, 2018
Test/Reference	LOR	Unit		
Organophosphorus Pesticides		0		
Disulfoton	0.2	ma/ka	< 0.2	< 0.2
EPN	0.2	ma/ka	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2
	0.2	mg/kg	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	93	92
Phenois (Halogenated)				
2-Chlorophenol	0.5	mg/kg	< 0.5	< 0.5
	0.5	mg/kg	< 0.5	< 0.5
	1.0	mg/kg	< 1	< 1
2.4.6-1 richlorophenol	1.0	mg/kg	< 1	< 1
2.6-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5
4-Chioro-3-methylphenol	1.0	mg/kg	< 1	<1
Tetrachlorophenols - Total	1.0	mg/kg	<1	<1
Total Halogenated Phenol*	1.0	mg/kg	<1	<1
Phenols (non-Halogenated)	1	iiig/kg		
2-Cvclobevyl-4 6-dinitrophenol	20	ma/ka	~ 20	< 20
2-Methyl-4.6-dinitrophenol	5	ma/ka	< 5	< 5
2-Methylphenol (o-Cresol)	0.2	ma/ka	< 0.2	< 0.2
2-Nitrophenol	1.0	ma/ka	< 1	< 1
2.4-Dimethylphenol	0.5	ma/ka	< 0.5	< 0.5
2.4-Dinitrophenol	5	ma/ka	< 5	< 5
3&4-Methylphenol (m&p-Cresol)	0.4	ma/ka	< 0.4	< 0.4
4-Nitrophenol	5	mg/ka	< 5	< 5
Dinoseb	20	mg/kg	< 20	< 20
Phenol	0.5	mg/kg	< 0.5	< 0.5
Total Non-Halogenated Phenol*	20	mg/kg	< 20	< 20
Phenol-d6 (surr.)	1	%	82	77

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			LMCC-W1 Soil M18-Ja08407 Jan 11, 2018	QC1 Soil M18-Ja08408 Jan 11, 2018
Test/Reference	LOR	Unit		
Heavy Metals				
Arsenic	2	mg/kg	2.0	2.8
Cadmium	0.4	mg/kg	< 0.4	0.5
Chromium	5	mg/kg	< 5	5.1
Copper	5	mg/kg	7.2	12
Lead	5	mg/kg	26	37
Mercury	0.1	mg/kg	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5
Zinc	5	mg/kg	56	91
% Moisture	1	%	21	25

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B7A			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Jan 18, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C36			
BTEX	Melbourne	Jan 18, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Jan 18, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Jan 18, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Melbourne	Jan 18, 2018	14 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soils by GCMS			
Phenols (Halogenated)	Melbourne	Jan 18, 2018	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soils by GCMS			
Phenols (non-Halogenated)	Melbourne	Jan 18, 2018	14 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soils by GCMS			
Metals M8	Melbourne	Jan 18, 2018	28 Days
- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)			
Eurofins mgt Suite B14			
Organochlorine Pesticides	Melbourne	Jan 18, 2018	14 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Melbourne	Jan 18, 2018	14 Day
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
% Moisture	Melbourne	Jan 15, 2018	14 Day
Method: LTM-GEN-7080 Moisture			

🛟 eurofins 🛛						Melbourne	Sydney	Brisbane	Perth			
			mgt		ABN– 50 005 (e.mail : Enviro web : www.eu	085 521 Sales@ rofins.co	eurofins om.au	s.com	2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271	Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 207	2/91 Leach Highway Kewdale WA 6105 D Phone : +61 8 9251 9600 94 NATA # 1261 Site # 23736
Co	mpany Name:	Coffey Envir	onments P/L N	N'castle			Or	der No			Received:	Jan 12, 2018 2:30 PM
Ad	Address: Lot 101, 19 Warabrook Boulevard Warabrook NSW 2304					Re Ph Fa	eport # ione: ix:	580387 02 4016 2300 02 4016 2380		Due: Priority: Contact Name:	Jan 19, 2018 5 Day Sean Blackford	
Project Name:LMCC-WINDALEProject ID:NTLEN213403									Eurofins	s mgt Analytical Serv	vices Manager : Mary Makarios	
Sample Detail					Eurofins mgt Suite B14	Moisture Set	Eurofins mgt Suite B7A					
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271		Х	Х	X				
Syd	hey Laboratory	NATA Site # 1	8217					$\left - \right $				
Port	b Laboratory - N	- NATA SILE #	20794 736					$\left \right $				
External Laboratory												
No	Sample ID	Sample Date	Sampling	Matrix	LAB ID							
1	LMCC-W1	Jan 11, 2018		Soil	M18-Ja08407	x	x	x				
2	QC1	Jan 11, 2018		Soil	M18-Ja08408	x	x	x				
Test	Counts	· · · ·	•			2	2	2				

Internal Quality Control Review and Glossary

General

1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

mg/L: milligrams per litre

NTU: Nephelometric Turbidity Units

ppm: Parts per million

%: Percentage

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ppb: Parts per billion org/100mL: Organisms per 100 millilitres MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

1011110	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
coc	Chain of Custody
SRA	Sample Receipt Advice
QSM	Quality Systems Manual ver 5.1 US Department of Defense
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			•	·		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank						
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total	mg/kg	< 0.3		0.3	Pass	
Method Blank						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank		•		·		
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank		1		1		
Organochlorine Pesticides						
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
a-BHC	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-BHC	mg/kg	< 0.05		0.05	Pass	
d-BHC	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank					
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank					
Phenois (Halogenated)				_	
2-Chlorophenol	mg/kg	< 0.5	0.5	Pass	
	mg/kg	< 0.5	0.5	Pass	
	mg/kg	< 1	1.0	Pass	
2.4.6-1 richlorophenol	mg/kg	< 1	1.0	Pass	
2.6-Dichlorophenol	mg/kg	< 0.5	0.5	Pass	
4-Chloro-3-methylphenol	mg/kg	< 1	1.0	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Pentachlorophenol	mg/kg	< 1	1.0	Pass	
Tetrachlorophenols - Total	mg/kg	< 1	1.0	Pass	
Method Blank					
Phenols (non-Halogenated)					
2-Cyclohexyl-4.6-dinitrophenol	mg/kg	< 20	20	Pass	
2-Methyl-4.6-dinitrophenol	mg/kg	< 5	5	Pass	
2-Methylphenol (o-Cresol)	mg/kg	< 0.2	0.2	Pass	
2-Nitrophenol	mg/kg	< 1	1.0	Pass	
2.4-Dimethylphenol	mg/kg	< 0.5	0.5	Pass	
2.4-Dinitrophenol	mg/kg	< 5	5	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/kg	< 0.4	0.4	Pass	
4-Nitrophenol	mg/kg	< 5	5	Pass	
Dinoseb	mg/kg	< 20	20	Pass	
Phenol	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery	00				
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	123	70-130	Pass	
TRH C10-C14	%	102	70-130	Pass	
LCS - % Recovery					
BTEX					
Toluene	%	112	70-130	Pass	
Xylenes - Total	%	108	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH >C10-C16	%	84	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	90	70-130	Pass	
Acenaphthylene	%	93	70-130	Pass	
Anthracene	%	82	70-130	Pass	
Benz(a)anthracene	%	94	70-130	Pass	
Benzo(a)pyrene	%	95	70-130	Pass	
Benzo(b&j)fluoranthene	%	112	70-130	Pass	
Benzo(g.h.i)perylene	%	90	70-130	Pass	
Benzo(k)fluoranthene	%	84	70-130	Pass	
Chrysene	%	95	70-130	Pass	
Dibenz(a.h)anthracene	%	98	70-130	Pass	
Fluoranthene	%	87	70-130	Pass	
Fluorene	%	93	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	95	70-130	Pass	
Naphthalene	%	96	70-130	Pass	
Phenanthrene	%	91	70-130	Pass	
Pyrene	%	89	70-130	Pass	
I CS - % Recovery		•	 •		

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Organochlorine Pesticides						
4.4'-DDD	%	115		70-130	Pass	
4.4'-DDE	%	111		70-130	Pass	
4.4'-DDT	%	92		70-130	Pass	
a-BHC	%	105		70-130	Pass	
Aldrin	%	107		70-130	Pass	
b-BHC	%	102		70-130	Pass	
d-BHC	%	105		70-130	Pass	
Dieldrin	%	109		70-130	Pass	
Endosulfan I	%	108		70-130	Pass	
Endosulfan II	%	108		70-130	Pass	
Endosulfan sulphate	%	106		70-130	Pass	
Endrin	%	120		70-130	Pass	
Endrin aldehyde	%	99		70-130	Pass	
Endrin ketone	%	100		70-130	Pass	
g-BHC (Lindane)	%	106		70-130	Pass	
Heptachlor	%	107		70-130	Pass	
Heptachlor epoxide	%	108		70-130	Pass	
Hexachlorobenzene	%	101		70-130	Pass	
Methoxychlor	%	93		70-130	Pass	
I CS - % Recovery	/0			10 100	1 400	
Organophosphorus Pesticides						
Diazinon	%	76		70-130	Pass	
Dimethoate	%	86		70-130	Pass	
Ethion	%	91		70-130	Pass	
Fenitrothion	%	72		70-130	Pass	
Methyl parathion	%	73		70-130	Pass	
Mevinnhos	%	97		70-130	Pass	
	70	51		70 100	1 433	
Phenols (Halogenated)						
2-Chlorophenol	%	94		30-130	Pass	
2 4-Dichlorophenol	%	84		30-130	Pass	
2.4 5-Trichlorophenol	%	07		30-130	Pass	
2.4.6-Trichlorophenol	%	71		30-130	Pass	
	70 0/_	02		30-130	Pass	
4-Chloro-3-methylphenol	70 0/_	86		30-130	Pass	
Pontachlorophonol	/0 0/.	64		30-130	Pass	
	/0 0/	19		30 130	Pass	
	/0	40		30-130	газэ	
Phonols (non-Halogonated)		[
2 Cycloboxyl 4.6 dipitrophonol	0/	20		20.120	Page	
2 Mothyl 4.6 dinitrophonol	/0 0/	53		30 130	Pass	
2 Mothylphopol (o Crosol)	/0 0/	00		30 130	Pass	
2 Nitraphanal	/0	67		30-130	Pass	
2.4 Dimethylabonal	/0 0/	46		30 130	Pass	
2.4 Dinitrophonol	/0	40		30-130	Pass	
2.4-Dinitiophenol (m ² n Crocol)	-70	40		30-130	Pass	
	-70	60		30-130	Pass	
	-70 07	47		30 130	Pass	
Dhanal	% 0/	4/		30-130	Pass	
	70	90		30-130	Pass	
Heavy Metelo						
	0/	440		00.400	Der	
	<u>%</u>	116	<u> </u>	80-120	Pass	
Caomium	%	105		80-120	Pass	1

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Chromium			%	107	80-120	Pass	
Copper			%	104	80-120	Pass	
Lead			%	102	80-120	Pass	
Mercury			%	109	75-125	Pass	
Nickel			%	105	80-120	Pass	
Zinc			%	111	80-120	Pass	
Test	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code	
Spike - % Recovery					 		
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1			
TRH C6-C9	M18-Ja08396	NCP	%	100	70-130	Pass	
TRH C10-C14	%	98	70-130	Pass			
Spike - % Recovery			1		i		
BTEX	1			Result 1			
Benzene	M18-Ja08396	NCP	%	91	70-130	Pass	
Toluene	M18-Ja08396	NCP	%	100	70-130	Pass	
Ethylbenzene	M18-Ja08396	NCP	%	98	70-130	Pass	
m&p-Xylenes	M18-Ja08396	NCP	%	102	70-130	Pass	
o-Xylene	M18-Ja08396	NCP	%	97	70-130	Pass	
Xylenes - Total	M18-Ja08396	NCP	%	101	70-130	Pass	
Spike - % Recovery				1	 	r	
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1			
Naphthalene	M18-Ja08396	NCP	%	84	70-130	Pass	
TRH C6-C10	M18-Ja08396	NCP	%	100	70-130	Pass	
TRH >C10-C16	M18-Ja08397	NCP	%	109	70-130	Pass	
Spike - % Recovery			1	-	1		
Polycyclic Aromatic Hydrocarbons	5			Result 1			
Acenaphthene	M18-Ja08396	NCP	%	86	70-130	Pass	
Acenaphthylene	M18-Ja08396	NCP	%	91	70-130	Pass	
Anthracene	M18-Ja08396	NCP	%	90	70-130	Pass	
Benz(a)anthracene	M18-Ja08396	NCP	%	88	70-130	Pass	
Benzo(a)pyrene	M18-Ja08396	NCP	%	88	70-130	Pass	
Benzo(b&j)fluoranthene	M18-Ja08396	NCP	%	98	70-130	Pass	
Benzo(g.h.i)perylene	M18-Ja08396	NCP	%	81	70-130	Pass	
Benzo(k)fluoranthene	M18-Ja08396	NCP	%	98	70-130	Pass	
Chrysene	M18-Ja08396	NCP	%	89	70-130	Pass	
Dibenz(a.h)anthracene	M18-Ja08396	NCP	%	87	70-130	Pass	
Fluoranthene	M18-Ja08396	NCP	%	83	70-130	Pass	
Fluorene	M18-Ja08396	NCP	%	91	70-130	Pass	
Indeno(1.2.3-cd)pyrene	M18-Ja08396	NCP	%	85	70-130	Pass	
Naphthalene	M18-Ja08396	NCP	%	97	70-130	Pass	
Phenanthrene	M18-Ja08396	NCP	%	88	70-130	Pass	
Pyrene	M18-Ja08396	NCP	%	83	70-130	Pass	
Spike - % Recovery				1	-	1	
Organochlorine Pesticides	1			Result 1			
4.4'-DDD	M18-Ja07085	NCP	%	94	70-130	Pass	
4.4'-DDE	M18-Ja07085	NCP	%	88	70-130	Pass	
4.4'-DDT	M18-Ja07133	NCP	%	83	70-130	Pass	
a-BHC	M18-Ja07085	NCP	%	82	70-130	Pass	
Aldrin	M18-Ja07085	NCP	%	84	70-130	Pass	
b-BHC	M18-Ja07085	NCP	%	81	70-130	Pass	
d-BHC	M18-Ja07085	NCP	%	76	70-130	Pass	
Dieldrin	M18-Ja07085	NCP	%	86	70-130	Pass	
Endosulfan I	M18-Ja07085	NCP	%	85	70-130	Pass	
Endosulfan II	M18-Ja07085	NCP	%	83	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	M18-Ja07085	NCP	%	71			70-130	Pass	
Endrin	M18-Ja07085	NCP	%	90			70-130	Pass	
Endrin aldehyde	M18-Ja07085	NCP	%	81			70-130	Pass	
Endrin ketone	M18-Ja07085	NCP	%	72	72		70-130	Pass	
g-BHC (Lindane)	M18-Ja07085	NCP	%	81	81		70-130	Pass	
Heptachlor	M18-Ja07085	NCP	%	78	78		70-130	Pass	
Heptachlor epoxide	M18-Ja07085	NCP	%	86		70-130	Pass		
Hexachlorobenzene	M18-Ja07085	NCP	%	81			70-130	Pass	
Methoxychlor	M18-Ja07133	NCP	%	88			70-130	Pass	
Spike - % Recovery									
Organophosphorus Pesticides				Result 1					
Diazinon	M18-Ja08396	NCP	%	77			70-130	Pass	
Dimethoate	M18-Ja08396	NCP	%	72			70-130	Pass	
Ethion	M18-Ja08396	NCP	%	84			70-130	Pass	
Fenitrothion	M18-Ja08396	NCP	%	72			70-130	Pass	
Methyl parathion	M18-Ja08396	NCP	%	72			70-130	Pass	
Mevinphos	M18-Ja08396	NCP	%	73			70-130	Pass	
Spike - % Recovery				1			1		
Phenols (Halogenated)	I			Result 1					
2-Chlorophenol	M18-Ja08396	NCP	%	90			30-130	Pass	
2.4-Dichlorophenol	M18-Ja08396	NCP	%	80			30-130	Pass	
2.4.5-Trichlorophenol	M18-Ja08396	NCP	%	91			30-130	Pass	
2.4.6-Trichlorophenol	M18-Ja08396	NCP	%	73			30-130	Pass	
2.6-Dichlorophenol	M18-Ja08396	NCP	%	90			30-130	Pass	
4-Chloro-3-methylphenol	M18-Ja08396	NCP	P % 81			30-130	Pass		
Pentachlorophenol	M18-Ja08396	NCP	NCP % 82			30-130	Pass		
Tetrachlorophenols - Total	M18-Ja08396	NCP	%	52			30-130	Pass	
Spike - % Recovery							1		
Phenols (non-Halogenated)	1			Result 1					
2-Cyclohexyl-4.6-dinitrophenol	M18-Ja08396	NCP	%	39			30-130	Pass	
2-Methyl-4.6-dinitrophenol	M18-Ja08396	NCP	%	57			30-130	Pass	
2-Methylphenol (o-Cresol)	M18-Ja08396	NCP	%	87			30-130	Pass	
2-Nitrophenol	M18-Ja08396	NCP	%	67			30-130	Pass	
2.4-Dimethylphenol	M18-Ja08396	NCP	%	65			30-130	Pass	
2.4-Dinitrophenol	M18-Ja08396	NCP	%	91			30-130	Pass	
3&4-Methylphenol (m&p-Cresol)	M18-Ja08396	NCP	%	82			30-130	Pass	
4-Nitrophenol	M18-Ja08396	NCP	%	63			30-130	Pass	
Dinoseb	M18-Ja08396	NCP	%	53			30-130	Pass	
Phenol	M18-Ja08396	NCP	%	95			30-130	Pass	
Spike - % Recovery							1		
Heavy Metals		NOD	0/	Kesult 1			75 405	D	
Arsenic	M18-Ja08396	NCP	%	111			75-125	Pass	
Chromium	M18-Ja08396	NCP	%	108			75-125	Pass	
Chromium	M18-Ja08396	NCP	%	107			75-125	Pass	
Copper	M18-Ja08396	NCP	%	100			75-125	Pass	
	N18 1600000	NCP	<u>%</u>	100			70-130	Pass	
	M18 1600000		%	106			75-125	Pass	
	IVI 10-Jau8396		70	120			10-125	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate					ı				
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M18-Ja08395	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	M18-Ja08396	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
IRH C15-C28	M18-Ja08396	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	M18-Ja08396	NCP	mg/kg	< 50	< 50	<1	30%	Pass	

Duplicate											
втех				Result 1	Result 2	RPD					
Benzene	M18-Ja08395	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass			
Toluene	M18-Ja08395	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass			
Ethylbenzene	M18-Ja08395	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass			
m&p-Xylenes	M18-Ja08395 NCP mg/kg < 0.2 < 0.2 <1		30%	Pass							
o-Xylene	M18-Ja08395	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass			
Xylenes - Total	M18-Ja08395 NCP mg/kg < 0.3 < 1 30% Pass										
Duplicate											
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD					
Naphthalene	M18-Ja08395	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
TRH C6-C10	M18-Ja08395	NCP	mg/kg	< 20	< 20	<1	30%	Pass			
TRH >C10-C16	M18-Ja08396	NCP	mg/kg	< 50	< 50	<1	30%	Pass			
TRH >C16-C34	M18-Ja08396	NCP	mg/kg	< 100	< 100	<1	30%	Pass			
TRH >C34-C40	M18-Ja08396	NCP	mg/kg	< 100	< 100	<1	30%	Pass			
Duplicate				1							
Polycyclic Aromatic Hydrocarbons	5			Result 1	Result 2	RPD					
Acenaphthene	S18-Ja05985	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
Acenaphthylene	S18-Ja05985	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
Anthracene	S18-Ja05985	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
Benz(a)anthracene	S18-Ja05985	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
Benzo(a)pyrene	S18-Ja05985	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
Benzo(b&j)fluoranthene	S18-Ja05985	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
Benzo(g.h.i)perylene	S18-Ja05985	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
Benzo(k)fluoranthene	S18-Ja05985	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
Chrysene	S18-Ja05985	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
Dibenz(a.h)anthracene	S18-Ja05985	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
Fluoranthene	S18-Ja05985	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
Fluorene	S18-Ja05985	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
Indeno(1.2.3-cd)pyrene	S18-Ja05985	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
Naphthalene	S18-Ja05985	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
Phenanthrene	S18-Ja05985	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
Pyrene	S18-Ja05985	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
Duplicate											
Organochlorine Pesticides				Result 1	Result 2	RPD					
Chlordanes - Total	M18-Ja07084	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass			
4.4'-DDD	M18-Ja07084	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
4.4'-DDE	M18-Ja07084	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
4.4'-DDT	M18-Ja07084	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
a-BHC	M18-Ja07084	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
Aldrin	M18-Ja07084	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
b-BHC	M18-Ja07084	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
d-BHC	M18-Ja07084	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
	M18-Ja07084	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
	M18-Ja07084	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
Endosulfan II	M18-Ja07084	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
Endosulfan sulphate	M18-Ja07084	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
	M18-Ja07084	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
Endrin aldehyde	M18-Ja07084	NCP	mg/kg "	< 0.05	< 0.05	<1	30%	Pass			
	M18-Ja07084	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
g-BHC (Lindane)	M18-Ja07084	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
	M18-Ja07084	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
	M18-Ja07084	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
Hexachioropenzene	IVI18-Ja07084	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
	IVI18-Ja07084	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
Ioxaphene	M18-Ja07084	NCP	mg/kg	<1	< 1	<1	30%	Pass			

Duplicate											
Organophosphorus Pesticides				Result 1	Result 2	RPD					
Azinphos-methyl	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Bolstar	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Chlorfenvinphos	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Chlorpyrifos	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Chlorpyrifos-methyl	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Coumaphos	M18-Ja08395	NCP	mg/kg	< 2	< 2	<1	30%	Pass			
Demeton-S	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Demeton-O	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Diazinon	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Dichlorvos	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Dimethoate	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Disulfoton	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
EPN	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Ethion	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Ethoprop	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Ethyl parathion	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Fenitrothion	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Fensulfothion	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Fenthion	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Malathion	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Merphos	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Methyl parathion	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Mevinphos	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Monocrotophos	M18-Ja08395	NCP	mg/kg	< 2	< 2	<1	30%	Pass			
Naled	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Omethoate	M18-Ja08395	NCP	mg/kg	< 2	< 2	<1	30%	Pass			
Phorate	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Pirimiphos-methyl	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Pyrazophos	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Ronnel	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Terbufos	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Tetrachlorvinphos	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Tokuthion	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Trichloronate	M18-Ja08395	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Duplicate				1							
Phenols (Halogenated)				Result 1	Result 2	RPD					
2-Chlorophenol	S18-Ja05985	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
2.4-Dichlorophenol	S18-Ja05985	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
2.4.5-Trichlorophenol	S18-Ja05985	NCP	mg/kg	< 1	< 1	<1	30%	Pass			
2.4.6-Trichlorophenol	S18-Ja05985	NCP	mg/kg	< 1	< 1	<1	30%	Pass			
2.6-Dichlorophenol	S18-Ja05985	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
4-Chloro-3-methylphenol	S18-Ja05985	NCP	mg/kg	< 1	< 1	<1	30%	Pass			
Pentachlorophenol	S18-Ja05985	NCP	mg/kg	< 1	< 1	<1	30%	Pass			
Tetrachlorophenols - Total	S18-Ja05985	NCP	mg/kg	< 1	< 1	<1	30%	Pass			
Duplicate				1				-			
Phenols (non-Halogenated)				Result 1	Result 2	RPD					
2-Cyclohexyl-4.6-dinitrophenol	S18-Ja05985	NCP	mg/kg	< 20	< 20	<1	30%	Pass			
2-Methyl-4.6-dinitrophenol	S18-Ja05985	NCP	mg/kg	< 5	< 5	<1	30%	Pass			
2-Methylphenol (o-Cresol)	S18-Ja05985	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
2-Nitrophenol	S18-Ja05985	NCP	mg/kg	< 1	< 1	<1	30%	Pass			
2.4-Dimethylphenol	S18-Ja05985	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
2.4-Dinitrophenol	S18-Ja05985	NCP	mg/kg	< 5	< 5	<1	30%	Pass			
3&4-Methylphenol (m&p-Cresol)	S18-Ja05985	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass			
4-Nitrophenol	S18-Ja05985	NCP	mg/kg	< 5	< 5	<1	30%	Pass			

Duplicate									
Phenols (non-Halogenated)				Result 1	Result 2	RPD			
Dinoseb	S18-Ja05985	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Phenol	S18-Ja05985 NCP mg/kg				< 0.5	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M18-Ja08396	NCP	mg/kg	4.1	4.1	<1	30%	Pass	
Cadmium	M18-Ja08396	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M18-Ja08396	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Copper	M18-Ja08396	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Lead	M18-Ja08396	NCP	mg/kg	19	20	1.0	30%	Pass	
Mercury	M18-Ja08396	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M18-Ja08396	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	M18-Ja08396	NCP	mg/kg	31	31	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	M18-Ja08400	NCP	%	25	23	9.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No
Comments	

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Mary Makarios	Analytical Services Manager
Alex Petridis	Senior Analyst-Metal (VIC)
Alex Petridis	Senior Analyst-Organic (VIC)
Harry Bacalis	Senior Analyst-Volatile (VIC)
Huong Le	Senior Analyst-Inorganic (VIC)
Joseph Edouard	Senior Analyst-Organic (VIC)

li falle

Glenn Jackson National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

	CHAI	N-OF-CU	STODY AND AN	ALYSIS REQUEST	Page 5	474
coffey 🏕	Consigning Office: Report Results to: Invoices to:	P. LW	Wat m. Wild	Monopile: Phone: N2406220	Email: Mrchevel o Lundat @	@coffey.com
Project No: 754 - Not CEW 213403 Task No: Project Name: CINCC WAN dale Laboratory	Laburata	4.01		An	alysis Request Section	
Special Instructions:		s da			1////////	
Lab No. Sample ID	Sample Date Time	Matrix (Soiletc)	Container Type & T-A Preservative*	1 1 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IIII NOTES	S
LMCC - EN WZ	5.2.15 Am	2011	F-		- 1987 × 1	TAT.
LACC- UT	-> 	\rightarrow				
~						
			i.			
RELINQUISHED BY			RECEIVED F	ВҮ	Sample Receipt Advice: (Lab Use Only)	100.5
Name: Date:	Vame:	ろして		Date: 5 /2 1 8	All Samples Recieved in Good Condition	
Coffey Environments Time:	Compan	Y:		Time: 2-20PM	All Documentation is in Proper Order	
Name: Date:	↓ Name:	A.	$\left(\right)$	Date: 67	Samples Received Properly Chilled	
Company: Time:	Compan	k: et		Time: 1(27)	Lab. Ref/Batch No.	
*Container Type & Preservation Codes: P - Plastic, G- Glass Bo S - Sulphuric Acid Preserved, I - Ice, ST - Sodium Thiosulfate,	ottle, J - Glass Jar, V- Vial NP - No Preservative, OP	, Z - Ziplock Ba	ig, N - Nitric Acid Preserved rvative	, C - Hydrochloric Acid Preserved,	CH258	
Coffey Environments			Version: 5		Issue Date: 11/	100/30/

Melbourne Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Coffey Environments P/L N'castle

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brishane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail : EnviroSales@eurofins.com

web : www.eurofins.com.au

Sample Receipt Advice

	-
Contact name:	Paul Wright
Project name:	LMCC WINDALE
Project ID:	754-NTLEN213403
COC number:	Not provided
Turn around time:	2 Day
Date/Time received:	Feb 6, 2018 11:27 AM
Eurofins mgt reference:	583345

Sample information

Company name:

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \checkmark Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 12.8 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \times Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- Custody Seals intact (if used). N/A

Contact notes

If you have any questions with respect to these samples please contact:

Mary Makarios on Phone : +61 3 8564 5000 or by e.mail: MaryMakarios@eurofins.com

Results will be delivered electronically via e.mail to Paul Wright - paul.wright@coffey.com.

Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

38 Years of Environmental Analysis & Experience

🛟 eurofins 🛛									Melbourne	Svd	lnev	Brisbane	Perth
			mgt		ABN– 50 005 0 e.mail : Enviros web : www.eur)85 521 Sales@ ofins.co	eurofins m.au	s.com	2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271	Unii 16 I Lan Pho NA	t F3, Building F Mars Road ne Cove West NSW 2066 one : +61 2 9900 8400 TA # 1261 Site # 18217	1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 460 NATA # 1261 Site # 207	2/91 Leach Highway Kewdale WA 6105 00 Phone : +61 8 9251 9600 794 NATA # 1261 Site # 23736
Co Ad	mpany Name: dress:	Coffey Enviro Lot 101, 19 V Warabrook NSW 2304	onments P/L N Warabrook Bo	l'castle ulevard			Ore Re Ph Fa:	der No.: port #: one: x:	583345 02 4016 2300 02 4016 2380			Received: Due: Priority: Contact Name:	Feb 6, 2018 11:27 AM Feb 8, 2018 2 Day Paul Wright
Pro Pro	oject Name: oject ID:	LMCC WIND 754-NTLEN2	DALE 213403								Eurofins	mgt Analytical Ser	vices Manager : Mary Makarios
		Sa	mple Detail			Moisture Set	Eurofins mgt Suite B7A						
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71		Х	Х						
Sydr	ey Laboratory	- NATA Site # 1	8217										
Bris	bane Laboratory	y - NATA Site #	20794										
Exte	rnal Laboratory - N	ATA SILE # 237	30										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	LMCC-W2	Feb 05, 2018		Soil	M18-Fe05353	х	х						
2	LMCC-W3	Feb 05, 2018		Soil	M18-Fe05354	Х	Х						
3	LMCC-W4	Feb 05, 2018		Soil	M18-Fe05355	Х	Х						
Test	Counts					3	3						

Certificate of Analysis

Coffey Environments Pty Ltd Newcastle Lot 101, 19 Warabrook Boulevard Warabrook NSW 2304

NATA Accredited Accreditation Number 1261 Site Number 1254

WORLD RECOGNISED

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Paul Wright

Report
Project name
Project ID
Received Date

583345-S LMCC WINDALE 754-NTLEN213403 Feb 06, 2018

Client Sample ID			LMCC-W2	LMCC-W3	LMCC-W4
			5011	5011	5011
Eurofins mgt Sample No.			W18-Fe05353	M18-Fe05354	M18-Fe05355
Date Sampled			Feb 05, 2018	Feb 05, 2018	Feb 05, 2018
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	100	150	< 50
TRH C29-C36	50	mg/kg	100	130	92
TRH C10-36 (Total)	50	mg/kg	200	280	92
BTEX					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	75	89	95
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	120	210	100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5

Client Sample ID Sample Matrix			LMCC-W2	LMCC-W3	LMCC-W4
Eurofina I mat Sample No			M19 Ec05252	M18 Ec05254	M18 E005255
Date Sampled			Feb 05 2018	Feb 05 2018	Feb 05 2018
Test/Poteroneo		Linit		1 05 05, 2010	1 00 00, 2010
Polycyclic Aromatic Hydrocarbons	LUK	Unit			
	0.5	ma/ka	:05	< 0 F	< 0.5
Elucropo	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrepe	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Nanhthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	ma/ka	< 0.5	< 0.5	< 0.5
Pyrene	0.5	ma/ka	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	ma/ka	< 0.5	< 0.5	< 0.5
2-Fluorohinhenvl (surr.)	1	- mg/kg	77	88	79
p-Terphenyl-d14 (surr.)	1	%	78	78	74
Phenols (Halogenated)	•	70	10		
2-Chlorophenol	0.5	ma/ka	< 0.5	< 0.5	< 0.5
2.4-Dichlorophenol	0.5	ma/ka	< 0.5	< 0.5	< 0.5
2.4.5-Trichlorophenol	1	ma/ka	< 1	< 1	< 1
2.4.6-Trichlorophenol	1.0	ma/ka	< 1	< 1	< 1
2.6-Dichlorophenol	0.5	ma/ka	< 0.5	< 0.5	< 0.5
4-Chloro-3-methylphenol	1.0	mg/kg	< 1	< 1	< 1
Pentachlorophenol	1.0	mg/kg	< 1	< 1	< 1
Tetrachlorophenols - Total	1.0	mg/kg	< 1	< 1	< 1
Total Halogenated Phenol*	1	mg/kg	< 1	< 1	< 1
Phenols (non-Halogenated)	•				
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	< 20	< 20	< 20
2-Methyl-4.6-dinitrophenol	5	mg/kg	< 5	< 5	< 5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	< 0.2	< 0.2
2-Nitrophenol	1.0	mg/kg	< 1	< 1	< 1
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5
2.4-Dinitrophenol	5	mg/kg	< 5	< 5	< 5
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	< 0.4	< 0.5
4-Nitrophenol	5	mg/kg	< 5	< 5	< 5
Dinoseb	20	mg/kg	< 20	< 20	< 20
Phenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Total Non-Halogenated Phenol*	20	mg/kg	< 20	< 20	< 20
Phenol-d6 (surr.)	1	%	81	95	87
Heavy Metals					
Arsenic	2	mg/kg	2.9	4.2	4.2
Cadmium	0.4	mg/kg	0.6	< 0.4	< 0.4
Chromium	5	mg/kg	18	9.7	< 5
Copper	5	mg/kg	12	5.9	7.7
Lead	5	mg/kg	29	16	31
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	15	5.8	< 5
Zinc	5	mg/kg	74	42	94
	1	1			
% Moisture	1	%	15	14	11

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time			
Eurofins mgt Suite B7A						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Feb 06, 2018	14 Day			
- Method: LTM-ORG-2010 TRH C6-C36						
BTEX	Melbourne	Feb 06, 2018	14 Day			
- Method: TRH C6-C40 - LTM-ORG-2010						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Feb 06, 2018	14 Day			
- Method: TRH C6-C40 - LTM-ORG-2010						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Feb 06, 2018	14 Day			
- Method: TRH C6-C40 - LTM-ORG-2010						
Polycyclic Aromatic Hydrocarbons	Melbourne	Feb 06, 2018	14 Day			
- Method: LTM-ORG-2130 PAH and Phenols in Soils by GCMS						
Phenols (Halogenated)	Melbourne	Feb 06, 2018	14 Days			
- Method: LTM-ORG-2130 PAH and Phenols in Soils by GCMS						
Phenols (non-Halogenated)	Melbourne	Feb 06, 2018	14 Day			
- Method: LTM-ORG-2130 PAH and Phenols in Soils by GCMS						
Metals M8	Melbourne	Feb 06, 2018	28 Days			
- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)						
% Moisture	Melbourne	Feb 06, 2018	14 Day			
- Method: LTM-GEN-7080 Moisture						
mgt ABN- e.ma web:	– 50 005 085 52 il : EnviroSales@ : www.eurofins.c	1 @eurofin com.au	Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736
---	--	--------------------------	---	---	--	--
Company Name: Coffey Environments P/L N'castle Address: Lot 101, 19 Warabrook Boulevard Warabrook NSW 2304 Project Name: LMCC WINDALE Project ID: 754-NTLEN213403		O R(PI Fa	er No.: ort #: 583345 ne: 02 4016 2300 02 4016 2380		Received:	Feb 6, 2018 11:27 AM Feb 8, 2018 2 Day Paul Wright
Sample Detail	Moisture Set	Eurofins mgt Suite B7A				
Melbourne Laboratory - NATA Site # 1254 & 14271	X	Х				
Sydney Laboratory - NATA Site # 18217		_				
Brisbane Laboratory - NATA Site # 20794						
External Laboratory						
No Sample ID Sample Date Sampling Matrix LAB	ID					
1 UMCC-W2 Feb 05 2018 Soil M18-Fec)5353 X	×				
2 I MCC-W3 Feb 05 2018 Soil M18-FeC)5354 X	X				
3 I MCC-W4 Feb 05, 2018 Soil M18-FeC)5355 X	X				
Test Counts	3	3				

Internal Quality Control Review and Glossary

General

1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

mg/L: milligrams per litre

NTU: Nephelometric Turbidity Units

ppm: Parts per million

%: Percentage

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ppb: Parts per billion org/100mL: Organisms per 100 millilitres MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

1011110	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	Quality Systems Manual ver 5.1 US Department of Defense
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			-	-		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank			I I		1	
втех						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total	mg/kg	< 0.3		0.3	Pass	
Method Blank					[
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					_	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
IRH >C16-C34	mg/kg	< 100		100	Pass	
IRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank				1	[
		.05		0.5	Dees	
Acenaphthelene	mg/kg	< 0.5		0.5	Pass	
Actemphinylene	mg/kg	< 0.5		0.5	Pass	
Antifiacene Renz/e)enthreeene	mg/kg	< 0.5		0.5	Pass	
Penze(a)alitiliacene	mg/kg	< 0.5		0.5	Pass	
Benzo(b) i) fluoranthono	mg/kg	< 0.5		0.5	Pass	
	mg/kg	< 0.5		0.5	Dass	
Benzo(k)fluoranthene	ma/ka	< 0.5		0.5	Pass	
Chrysene	ma/ka	< 0.5		0.5	Pass	
Dibenz(a b)anthracene	ma/ka	< 0.5		0.5	Pass	
Fluoranthene	ma/ka	< 0.5		0.5	Pass	
Fluorene	ma/ka	< 0.5		0.5	Pass	
Indeno(1,2,3-cd)pyrene	ma/ka	< 0.5		0.5	Pass	
Naphthalene	ma/ka	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank						
Phenols (Halogenated)						
2-Chlorophenol	mg/kg	< 0.5		0.5	Pass	
2.4-Dichlorophenol	mg/kg	< 0.5		0.5	Pass	
2.4.5-Trichlorophenol	mg/kg	< 1		1	Pass	
2.4.6-Trichlorophenol	mg/kg	< 1		1.0	Pass	
2.6-Dichlorophenol	mg/kg	< 0.5		0.5	Pass	
4-Chloro-3-methylphenol	mg/kg	< 1		1.0	Pass	
Pentachlorophenol	mg/kg	< 1		1.0	Pass	
Tetrachlorophenols - Total	mg/kg	< 1		1.0	Pass	
Method Blank			1			
Phenols (non-Halogenated)	1					
2-Cyclohexyl-4.6-dinitrophenol	mg/kg	< 20		20	Pass	

2Methylphenolmg/kg< 0.2	Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
2-Matriphenol -Namplenol -Namplenolmg/kg -	2-Methyl-4.6-dinitrophenol	mg/kg	< 5	5	Pass	
2.Nicphanol mg/kg <.1 No. 1.0 Pass 2.4.Dimitry/binnol mg/kg <.0.5	2-Methylphenol (o-Cresol)	mg/kg	< 0.2	0.2	Pass	
2.4-Dimethylphenol mg/kg <.0.5	2-Nitrophenol	mg/kg	< 1	1.0	Pass	
2.4-Dimorphenol (mkp-Cresol)mg/kg< 5.Pass34-Mutrophenol (mkp-Cresol)mg/kg< 2.5	2.4-Dimethylphenol	mg/kg	< 0.5	0.5	Pass	
344-Mathybphenol (mSp-Cresol) mgkg < 0.4 Pass ANtrophenol mgkg < 5	2.4-Dinitrophenol	mg/kg	< 5	5	Pass	
4-Nirophend mg/kg < 5. 7 Pass Dinoseb mg/kg < 20	3&4-Methylphenol (m&p-Cresol)	mg/kg	< 0.4	0.4	Pass	
Dnosobmgkg< 20mgkg< 0.5<PassPhenolmgkg< 0.5	4-Nitrophenol	mg/kg	< 5	5	Pass	
Phenolmg/kq< 0.5PasMethodMethod Blank </td <td>Dinoseb</td> <td>mg/kg</td> <td>< 20</td> <td>20</td> <td>Pass</td> <td></td>	Dinoseb	mg/kg	< 20	20	Pass	
Method Biank Image of the second	Phenol	mg/kg	< 0.5	0.5	Pass	
Heavy MotalsImage </td <td>Method Blank</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Method Blank					
Arsenicmgkg<.22988Cadmiummgkg<.0.4	Heavy Metals					
cadmiummgkg< 0.40.4PassChromiummgkg< 5	Arsenic	mg/kg	< 2	2	Pass	
chronwinmg/kg<	Cadmium	mg/kg	< 0.4	0.4	Pass	
Coppermg/kg<.5%%%Leadmg/kg<.5	Chromium	mg/kg	< 5	5	Pass	
Leadmg/kg< 6.5%%%Mercurymg/kg<.5	Copper	mg/kg	< 5	5	Pass	
Mercurymg/kg< 0.1PassPassNickelmg/kg< 5	Lead	mg/kg	< 5	5	Pass	
Nickelmg/kq< 5mg/kq< 5PassPassZincmg/kq< 6	Mercury	mg/kg	< 0.1	0.1	Pass	
Zincmg/kg< 5PassPassLCS - % Recoverable Hydrocarbons - 1999 NEPM Fractions70-130PassTRH C6-C3%8870-130PassTRH C6-C4%8870-130PassTRH C6-C4%8870-130PassTRH C6-C4%8870-130PassCS - % Recovery70-130PassEthylbenzene%8670-130PassToluene%8870-130PassStylenes - Total%8870-130PassStylenes - Total%8170-130PassNghenkalene%8070-130PassTRH C6-C10%8370-130PassTRH C6-C16%8070-130PassCS - % Recovery70-130PassLCS - % Recovery70-130PassChylene%8070-130PassNaphthalene%8070-130PassRecovery70-130PassStylenes70-130PassRecovery70-130Pas	Nickel	mg/kg	< 5	5	Pass	
LCS - % Recovery Image: Control of the co	Zinc	mg/kg	< 5	5	Pass	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions // // /	LCS - % Recovery					
TRH C6-C9 % 88 70-130 Pass TRH C10-C14 % 86 70-130 Pass LCS - % Recovery 70-130 Pass Benzene % 81 70-130 Pass Toluene % 86 70-130 Pass Toluene % 86 70-130 Pass Ethylbenzene % 88 70-130 Pass Msp-Xylenes Yolas 81 70-130 Pass LCS - % Recovery % 81 70-130 Pass TRH C6-C10 % 80 70-130 Pass CS - % Recovery 70-130 Pass TRH - C10-C16 % 80 70-130 Pass Acenaphthene %	Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C10-C14%86%70-130PassLCS * Recovery </td <td>TRH C6-C9</td> <td>%</td> <td>88</td> <td>70-130</td> <td>Pass</td> <td></td>	TRH C6-C9	%	88	70-130	Pass	
USE NEROUNDEUSE NEROUNDEBER2Image Neround NetworkBenzene%% <t< td=""><td>TRH C10-C14</td><td>%</td><td>86</td><td>70-130</td><td>Pass</td><td></td></t<>	TRH C10-C14	%	86	70-130	Pass	
BTEXImage: border of the sector o	LCS - % Recovery					
Benzene%8170-130PassToluene%8670-130PassEthylbenzene%8870-130Passmåp.Xylenes%8170-130PassXylenes-Total%8170-130PassLCS - % Recovery8170-130PassTotal Recoverable Hydrocarbons - 2013 NEPM Fractions70-130PassTotal Recoverable Hydrocarbons - 2013 NEPM Fractions%8070-130PassTRH C6-C10%8070-130PassTRH C5-C10-C16%8070-130PassC6S - % Recovery8070-130PassPolycyclic Aromatic Hydrocarbons%9770-130PassAcenaphthene%9970-130PassAnthracene%10470-130PassBenzo(a)pryene%8770-130PassBenzo(a)pryene%9870-130PassBenzo(b)ljouranthene%9870-130PassBenzo(b)ljouranthene%9370-130PassBenzo(b)ljouranthene%9370-130PassBenzo(b)ljouranthene%9370-130PassBenzo(b	BTEX					
Toluene%86%70-130PassEthylbenzene%88%%70-130Passmåp-Xylenes%81%70-130PassSylenes-Total%81%70-130Pass CES * Recovery Total Recoverable Hydrocarbons - 2013 NEPM FractionsNaphthalene%80%70-130PassTRH Ce-C10%83%70-130PassTRH Ce-C10%80%70-130PassTRH Ce-C10%80%70-130PassAcenaphthene%80%70-130PassAcenaphthene%80%70-130PassAcenaphthylene%97%70-130PassBenzo(a)prene%98%70-130PassBenzo(k)fluoranthene%98%70-130PassBenzo(k)fluoranthene%93%70-130PassBenzo(k)fluoranthene%92%70-130PassBenzo(k)fluoranthene%92%70-130PassBenzo(k)fluoranthene%92%70-130PassBenzo(k)fluoranthene%92%70-130PassBenzo(k)fluoranthene%92%70-130PassBenzo(k)fluoranthene%92%70-130PassFluorene%92%	Benzene	%	81	70-130	Pass	
Ethylbenzene%8870-130Passmåp-Xylenes%8170-130PassXylenes - Total%8170-130PassLCS - % Recovery70-130PassTotal Recoverable Hydrocarbons - 2013 NEPM Fractions70-130PassNaphthalene%8070-130PassTRH C6-C10%8370-130PassTRH 2C10-C16%8370-130PassCS - % Recovery70-130PassPolycyclic Aromatic Hydrocarbons70-130PassAcenaphthylene%9770-130PassAcenaphthylene%9770-130PassBenzo(alphtracene%9870-130PassBenzo(alphtracene%9870-130PassBenzo(bå)fluoranthene%9870-130PassBenzo(bå)fluoranthene%9870-130PassDibenz(a.h)nthracene%9270-130PassBenzo(bå)fluoranthene%9270-130PassBenzo(bå)fluoranthene%9270-130PassBenzo(hjuoranthene <td>Toluene</td> <td>%</td> <td>86</td> <td>70-130</td> <td>Pass</td> <td></td>	Toluene	%	86	70-130	Pass	
m&p-Xylenes7%81170-130Pass1Xylenes - Total%8170-130Pass1LCS - % RecoveryTotal Recoverable Hydrocarbons - 2013 NEPM Fractions70-130Pass1Naphthalene%8070-130Pass111TRH C6-C10%8370-130Pass111	Ethylbenzene	%	88	70-130	Pass	
Xylenes - Total%8170-130PassLCS - % RecoveryTotal Recoverable Hydrocarbons - 2013 NEPM FractionsNaphthalene%8070-130PassNaphthalene%8070-130PassTRH Cs-C10%8070-130PassTRH Sc-C10-C16%8070-130PassLCS - % Recovery70-130PassPolycyclic Aromatic Hydrocarbons%9770-130PassAcenaphthene%9770-130PassAcenaphthylene%10870-130PassAnthracene%9970-130PassBenzo(ba)filuoranthene%8770-130PassBenzo(bylfluoranthene%9870-130PassBenzo(bylfluoranthene%9870-130PassBenzo(bylfluoranthene%9270-130PassBenzo(bylfluoranthene%9270-130PassBenzo(bylfluoranthene%9270-130PassDibenz(a.h)anthracene%9970-130PassBenzo(bylfuoranthene%9270-130PassDibenz(a.h)anthracene%9270-130PassBenzo(bylfuoranthene%9270-130PassDibenz(a.h)anthracene%9270-130Pass	m&p-Xylenes	%	81	70-130	Pass	
LCS - % Recovery Image: style st	Xylenes - Total	%	81	70-130	Pass	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions Image fractions <thimage fractions<="" th=""> <thimage fr<="" td=""><td>LCS - % Recovery</td><td></td><td></td><td></td><td></td><td></td></thimage></thimage>	LCS - % Recovery					
Naphthalene % 80 70-130 Pass TRH C6-C10 % 83 70-130 Pass TRH >C10-C16 % 80 70-130 Pass LCS - % Recovery 70-130 Pass Polycyclic Aromatic Hydrocarbons 70 70-130 Pass Acenaphthylene % 97 70-130 Pass Acenaphthylene % 97 70-130 Pass Anthracene % 98 70-130 Pass Benzo(a)pyrene % 104 70-130 Pass Benzo(b)fluoranthene % 98 70-130 Pass Benzo(k)fluoranthene % 98 70-130 Pass Benzo(k)fluoranthene % 98 70-130 Pass Benzo(k)fluoranthene % 92 70-130 Pass Benzo(k)fluoranthene %	Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH C6-C10 % 83 70-130 Pass TRH >C10-C16 % 80 70-130 Pass LCS - % Recovery Polycyclic Aromatic Hydrocarbons % 97 70-130 Pass Acenaphthene % 97 70-130 Pass Acenaphthylene % 108 70-130 Pass Actinacene % 99 70-130 Pass Benz(a)anthracene % 104 70-130 Pass Benzo(a)pyrene % 87 70-130 Pass Benzo(g)fluoranthene % 98 70-130 Pass Benzo(k)fluoranthene % 93 70-130 Pass Dibenz(a.h)anthracene % 92 70-130 Pass Fluoranthene % 92 <	Naphthalene	%	80	70-130	Pass	
TRH >C10-C16 % 80 70-130 Pass LCS - % Recovery % 80 70-130 Pass Polycyclic Aromatic Hydrocarbons % 97 70-130 Pass Acenaphthene % 97 70-130 Pass Acenaphthylene % 108 70-130 Pass Anthracene % 99 70-130 Pass Benzo(a)nthracene % 104 70-130 Pass Benzo(a)gyrene % 87 70-130 Pass Benzo(b\\)fluoranthene % 98 70-130 Pass Benzo(b\\)fluoranthene % 98 70-130 Pass Benzo(b\\)fluoranthene % 98 70-130 Pass Dibenz(a.h)anthracene % 93 70-130 Pass Dibenz(a.h)anthracene % 92 70-130 Pass Fluoranthene % 90 70-130 Pass Fluoranthene % 97 <	TRH C6-C10	%	83	70-130	Pass	
LCS - % Recovery Second S	TRH >C10-C16	%	80	70-130	Pass	
Polycyclic Aromatic Hydrocarbons Image: Marcel Mydrocarbons Image: Mydrocarbons Image: Mydrocarbons Image: Mydrocarbons Mydrocarbons Pass Image: Mydrocarbons Pass	LCS - % Recovery			-		
Acenaphthene % 97 70-130 Pass Acenaphthylene % 108 70-130 Pass Integration Anthracene % 99 70-130 Pass Integration Benz(a)anthracene % 104 70-130 Pass Integration Benzo(a)pyrene % 104 70-130 Pass Integration Benzo(b§)jfluoranthene % 87 70-130 Pass Integration Benzo(b§)jfluoranthene % 98 70-130 Pass Integration Benzo(g.h.i)perylene % 98 70-130 Pass Integration Benzo(k)fluoranthene % 93 70-130 Pass Integration Chrysene % 93 70-130 Pass Integration Dibenz(a.h)anthracene % 92 70-130 Pass Integration Fluorene % 92 70-130 Pass Integration Indeno(1.2.3-cd)pyrene % 97 70-130 Pass Integration Naphthalene	Polycyclic Aromatic Hydrocarbons					
Acenaphthylene % 108 70-130 Pass Anthracene % 99 70-130 Pass Image: Second	Acenaphthene	%	97	70-130	Pass	
Anthracene % 99 70-130 Pass Benz(a)anthracene % 104 70-130 Pass Benzo(a)pyrene % 87 70-130 Pass Benzo(b§)fluoranthene % 98 70-130 Pass Benzo(g.h.i)perylene % 98 70-130 Pass Benzo(k)fluoranthene % 98 70-130 Pass Benzo(k)fluoranthene % 93 70-130 Pass Benzo(k)fluoranthene % 93 70-130 Pass Benzo(k)fluoranthene % 93 70-130 Pass Dibenz(a.h)anthracene % 92 70-130 Pass Fluoranthene % 92 70-130 Pass Fluorene % 90 70-130 Pass Indeno(1.2.3-cd)pyrene % 99 70-130 Pass Naphthalene % 92 70-130 Pass Phenanthrene % 92 70-130 Pass Pyrene % 92 70-130 Pass <td>Acenaphthylene</td> <td>%</td> <td>108</td> <td>70-130</td> <td>Pass</td> <td></td>	Acenaphthylene	%	108	70-130	Pass	
Benz(a)anthracene % 104 70-130 Pass Benzo(a)pyrene % 87 70-130 Pass Benzo(b&j)fluoranthene % 98 70-130 Pass Benzo(g.h.i)perylene % 118 70-130 Pass Benzo(k)fluoranthene % 93 70-130 Pass Chrysene % 92 70-130 Pass Dibenz(a.h)anthracene % 92 70-130 Pass Fluoranthene % 92 70-130 Pass Fluoranthene % 92 70-130 Pass <td>Anthracene</td> <td>%</td> <td>99</td> <td>70-130</td> <td>Pass</td> <td></td>	Anthracene	%	99	70-130	Pass	
Benzo(a)pyrene % 87 70-130 Pass Benzo(b&i)fluoranthene % 98 70-130 Pass 1 Benzo(g.h.i)perylene % 118 70-130 Pass 1 Benzo(k)fluoranthene % 93 70-130 Pass 1 Benzo(k)fluoranthene % 93 70-130 Pass 1 Chrysene % 92 70-130 Pass 1 Dibenz(a.h)anthracene % 92 70-130 Pass 1 Fluoranthene % 90 70-130 Pass 1 Fluorene % 90 70-130 Pass 1 Indeno(1.2.3-cd)pyrene % 97 70-130 Pass 1 Naphthalene % 92 70-130 Pass 1 Phenanthrene % 92 70-130 Pass 1	Benz(a)anthracene	%	104	70-130	Pass	
Benzo(b&j)fluoranthene % 98 70-130 Pass Benzo(g.h.i)perylene % 118 70-130 Pass Benzo(k)fluoranthene % 93 70-130 Pass Chrysene % 92 70-130 Pass Dibenz(a.h)anthracene % 92 70-130 Pass Fluoranthene % 92 70-130 Pass Fluoranthene % 92 70-130 Pass Fluoranthene % 90 70-130 Pass Indeno(1.2.3-cd)pyrene % 99 70-130 Pass Naphthalene % 92 70-130 Pass Phenanthrene % 92 70-130 Pass	Benzo(a)pyrene	%	87	70-130	Pass	
Benzo(g.h.i)perylene % 118 70-130 Pass Benzo(k)fluoranthene % 93 70-130 Pass Chrysene % 92 70-130 Pass Dibenz(a.h)anthracene % 92 70-130 Pass Fluoranthene % 92 70-130 Pass	Benzo(b&j)fluoranthene	%	98	70-130	Pass	
Benzo(k)fluoranthene % 93 70-130 Pass Chrysene % 92 70-130 Pass Image: Chrysene Dibenz(a.h)anthracene % 92 70-130 Pass Image: Chrysene Fluoranthene % 90 70-130 Pass Image: Chrysene Fluoranthene % 90 70-130 Pass Image: Chrysene Fluorene % 99 70-130 Pass Image: Chrysene Indeno(1.2.3-cd)pyrene % 97 70-130 Pass Image: Chrysene Naphthalene % 92 70-130 Pass Image: Chrysene Pass Image: Chrysene Pyrene % 92 70-130 Pass Image: Chrysene Image: Chr	Benzo(g.h.i)perylene	%	118	70-130	Pass	
Chrysene % 92 70-130 Pass Dibenz(a.h)anthracene % 92 70-130 Pass Fluoranthene % 90 70-130 Pass Fluorene % 90 70-130 Pass Indeno(1.2.3-cd)pyrene % 97 70-130 Pass Naphthalene % 92 70-130 Pass Phenanthrene % 92 70-130 Pass Pyrene % 87 70-130 Pass	Benzo(k)fluoranthene	%	93	70-130	Pass	
Dibenz(a.h)anthracene % 92 70-130 Pass Fluoranthene % 90 70-130 Pass Fluorene % 99 70-130 Pass Indeno(1.2.3-cd)pyrene % 97 70-130 Pass Naphthalene % 92 70-130 Pass Phenanthrene % 105 70-130 Pass	Chrysene	%	92	70-130	Pass	
Fluoranthene % 90 70-130 Pass Fluorene % 99 70-130 Pass Indeno(1.2.3-cd)pyrene % 97 70-130 Pass Naphthalene % 92 70-130 Pass Phenanthrene % 105 70-130 Pass Pyrene 87 70-130 Pass	Dibenz(a.h)anthracene	%	92	70-130	Pass	
Fluorene % 99 70-130 Pass Indeno(1.2.3-cd)pyrene % 97 70-130 Pass Naphthalene % 92 70-130 Pass Phenanthrene % 105 70-130 Pass Pyrene % 87 70-130 Pass	Fluoranthene	%	90	70-130	Pass	
Indeno(1.2.3-cd)pyrene % 97 70-130 Pass Naphthalene % 92 70-130 Pass Phenanthrene % 105 70-130 Pass Pyrene % 87 70-130 Pass	Fluorene	%	99	70-130	Pass	
Naphthalene % 92 70-130 Pass Phenanthrene % 105 70-130 Pass Pyrene % 87 70-130 Pass	Indeno(1.2.3-cd)pyrene	%	97	70-130	Pass	
Phenanthrene % 105 70-130 Pass Pyrene % 87 70-130 Pass	Naphthalene	%	92	70-130	Pass	
Pyrene % 87 70-130 Pass	Phenanthrene	%	105	70-130	Pass	
	Pyrene	%	87	70-130	Pass	

Phenol (Halogenated)UNNN <th< th=""><th>Test</th><th></th><th></th><th>Units</th><th>Result 1</th><th>Acceptance Limits</th><th>Pass Limits</th><th>Qualifying Code</th></th<>	Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
2-Cholonghenol5%898980-130Pass2.4-Schridkoophenol	Phenols (Halogenated)							
2.4-Dicklorophenol % 90 20.130 Pass 2.4.5-Ticklorophenol % 87 20.130 Pass 2.4.5-Ticklorophenol % 87 20.130 Pass 2.6-Dicklorophenol % 87 20.130 Pass 2.6-Dicklorophenol % 68 30.130 Pass 126-Dicklorophenol % 68 30.130 Pass 126-Dicklorophenol % 63 30.130 Pass 126-X-Recovery # 101 30.130 Pass 12-Netrophenol foundorophenol % 53 30.130 Pass 2-AdvinyL-6-Advintophenol % 53 30.130 Pass 2-MeryL-6-Advintophenol % 67 30.130 Pass 2.4-Dimetrylphenol (n-C-creac) % 67 30.130 Pass 2.4-Dimetrylphenol (n-G-creac) % 67 30.130 Pass 2.4-Dimetrylphenol (n-G-creac) % 74 30.130 Pass 2.	2-Chlorophenol			%	89	30-130	Pass	
2.4.5.Tricklorophenol % 87 30-130 Pass 2.6.5.Oricklorophenol % 97 30-130 Pass 2.6.5.Oricklorophenol % 92 30-130 Pass 4.Chloro-3.methylphenol % 92 30-130 Pass Tetrachlorophenols % 68 30-130 Pass Tetrachlorophenols % 68 30-130 Pass Colorsking Acting Antional (Con-Halogenated) % 53 30-130 Pass 2.Methylphenol % 53 30-130 Pass 2.Methylphenol % 67 30-130 Pass 2.4.Dimthylphenol % 67 30-130 Pass 2.4.Dimthylphenol (m&p-Cresol) % 67 30-130 Pass 2.4.Dimthylphenol (m&p-Cresol) % 74 30-130 Pass 2.4.Dimthylphenol (m&p-Cresol) % 74 30-130 Pass 2.4.Dimthylphenol (m&p-Cresol) % 74 30-130 Pass	2.4-Dichlorophenol			%	90	30-130	Pass	
24.6 Triohonophenal%%%	2.4.5-Trichlorophenol			%	87	30-130	Pass	
2.6-Dichicophenol > % 87 0 0.0100 Pess Pentachlorophenols - Total % 68 0.0130 Pass Cobs. % Recovery % 101 0.0130 Pass Pentachlorophenols - Total % 63 0.0130 Pass Cobs. % Recovery % 53 0.0130 Pass 2-Metryhenol (o-Crasol) % 53 0.0130 Pass 2-Metryhenol (o-Crasol) % 67 0.0130 Pass 2-Metryhenol (o-Crasol) % 87 0.0130 Pass 2-Metryhenol (o-Crasol) % 87 0.0130 Pass 2-Metryhenol (o-Crasol) % 87 0.0130 Pass 2-Metryhenol (mSp-Cresol) % 87 0.0130 Pass 2-Metryhenol (mSp-Cresol) % 87 0.0130 Pass Dinoseb % 7% 810 0.0130 Pass Corpar % 100 0.0120 <	2.4.6-Trichlorophenol			%	97	30-130	Pass	
4-Chioro-3-metrylphenol % 92 30-130 Pass Tetrachiorophenols - Total % 68 30-130 Pass LCS -% Recovery % 101 30-130 Pass Phenols (non-Halogenated) % 53 30-130 Pass 2-Cychoknyl-4.6-dinitrophenol % 53 30-130 Pass 2-Methyl-4.6-dinitrophenol % 53 30-130 Pass 2-Methyl-4.6-dinitrophenol % 87 30-130 Pass 2-Methyl-4.6-dinitrophenol % 93 30-130 Pass 2-Methyl-4.6-dinitrophenol % 93 30-130 Pass 2-Methyl-4.6-dinitrophenol % 93 30-130 Pass 2.4-Dinethylphenol % 93 30-130 Pass 2.4-Dinethylphenol % 93 30-130 Pass 2.4-Dinethylphenol % 87 30-130 Pass 2.4-Dinethylphenol % 87 30-130 Pass 2.4-Dinethylphenol % 81 30-130 Pass 2.4-Dinethylphenol % 81 30-130 Pass 2.4-Dinethylphenol % 81 30-130 Pass	2.6-Dichlorophenol			%	87	30-130	Pass	
Pentachivophenols - Total / Etrachivophenols - Total / Etrachivophenol No Pass 2-Metrykhen (C-Cresol) - % 53 30.130 Pass 2-Metrykhen (C-Cresol) - % 53 30.130 Pass 2-Metrykhen (C-Cresol) - % 97 30.130 Pass 2-Montrykhenol - % 97 30.130 Pass 2-Montrykhenol - % 97 30.130 Pass 2-Montrykhenol - % 97 30.130 Pass 2-ADmetrykhenol - % 81 30.130 Pass 2-ADmetrykhenol - % 74 0.130 Pass 2-ADmetrykhenol - % 74 0.30.130 Pass 2-ADmetrykhenol - % 74 0.30.130 Pass 2-ADmetrykhenol - % 81 0.30.130 Pass <td< td=""><td>4-Chloro-3-methylphenol</td><td></td><td></td><td>%</td><td>92</td><td>30-130</td><td>Pass</td><td></td></td<>	4-Chloro-3-methylphenol			%	92	30-130	Pass	
Tetrachicophenols - Total % 101 30-130 Pass Phenols (non-Halogenated) % 63 30-130 Pass 2.4\Detrokayl-4.6-dintrophenol % 63 30-130 Pass 2.4\Detrophenol % 74 30-130 Pass 2.4\Detrophenol % 74 30-130 Pass 2.4\Detrophenol % 74 30-130 Pass Dinoseb % 74 30-130 Pass Phenol % 74 30-130 Pass Cadmium % 107 80-120 Pass Cadmium % 102 60-120 Pass Cadmium	Pentachlorophenol			%	68	30-130	Pass	
LCS - % Recovery V V 2-Cyclohaxyl-4.6-dinitrophanol % 53 30-130 Pass 2-Methylphenol (O Cresol) % 63 30-130 Pass 2-Methylphenol (O Cresol) % 63 30-130 Pass 2-Allonitrophenol % 97 30-130 Pass 2-4-Dinitrophenol % 93 30-130 Pass 2-4-Dinitrophenol % 87 30-130 Pass 2.4-Dinitrophenol % 81 30-130 Pass Dinoseb % 81 30-130 Pass LCS * & Recovery % 107 80-120 Pass Cadmium % 102 75-126 Pass Cadmium % 100 80-120 Pass <	Tetrachlorophenols - Total			%	101	30-130	Pass	
Phenols (non-Halogenate) / <td>LCS - % Recovery</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td>	LCS - % Recovery				1			
2-Cyclobexyl-4-G-dnitrophenol % 63 30-130 Pass 2-Methyl-6-dnitrophenol % 63 30-130 Pass 2-Methyl-6-dnitrophenol % 87 30-130 Pass 2-Autorphanol % 87 30-130 Pass 2.4-Dimethylphenol % 87 30-130 Pass 2.4-Dimethylphenol % 83 30-130 Pass 2.4-Dimethylphenol % 87 30-130 Pass 2.4-Dimethylphenol % 74 30-130 Pass 2.4-Dimethylphenol % 74 30-130 Pass 2.4-Dimethylphenol % 74 30-130 Pass Dinoseb % 74 30-130 Pass Costeronum % 74 30-130 Pass Costeronum % 107 80-120 Pass Costeronum % 106 80-120 Pass Cotronum % 101 80-120	Phenols (non-Halogenated)							
2-Methylphenol (o-Cresol)	2-Cyclohexyl-4.6-dinitrophenol			%	53	30-130	Pass	
2-Metryhphenol (c-Cresol) 9% 67 30-130 Pass 2.4-Dimethyhphenol % 67 30-130 Pass 2.4-Dimethyhphenol % 63 30-130 Pass 2.4-Dimethyhphenol % 67 30-130 Pass 3.4-Methyhphenol(m&p-Cresol) % 67 30-130 Pass 3.4-Methyhphenol(m&p-Cresol) % 67 30-130 Pass 4-Nitrophenol % 67 30-130 Pass Dinoseb % 64 30-130 Pass Phenol % 64 30-130 Pass ICS * & Recovery % 107 80-120 Pass Cadmium % 102 80-120 Pass Cadmium % 106 80-120 Pass Cadmium % 100 80-120 Pass Lead % 101 80-120 Pass Inflace % 102 70-130 Pass <td>2-Methyl-4.6-dinitrophenol</td> <td></td> <td></td> <td>%</td> <td>53</td> <td>30-130</td> <td>Pass</td> <td></td>	2-Methyl-4.6-dinitrophenol			%	53	30-130	Pass	
2-Nitrophenol % 97 30-130 Pass 2.4-Dinktophenol % 93 30-130 Pass 2.4-Dinktophenol % 39 30-130 Pass 3.84-Methylphenol (m&p-Cresol) % 87 30-130 Pass Dinosab % 87 30-130 Pass Phenol % 87 30-130 Pass Cassmic % 84 30-130 Pass Cassmic % 84 30-130 Pass Cassmic % 107 80-120 Pass Cadmium % 107 80-120 Pass Cadmium % 106 80-120 Pass Cadmium % 100 80-120 Pass Lead % 100 80-120 Pass Marcury % 100 80-120 Pass Inckel Source % 100 80-120 Pass Inckel	2-Methylphenol (o-Cresol)			%	87	30-130	Pass	
2.4-Dinitrophenol % 93 30-130 Pass 2.4-Dinitrophenol % 39 30-130 Pass 3.84-Metrybphenol (m&p-Cresol) % 67 30-130 Pass 3.84-Metrybphenol (m&p-Cresol) % 67 30-130 Pass Dinoseb % 74 30-130 Pass Dinoseb % 84 30-130 Pass Dinoseb % 102 80-120 Pass Cadmium % 102 80-120 Pass Cadmium % 100 80-120 Pass Copper % 102 76-125 Pass Mercury % 102 76-125 Pass Nickel Lab Sample ID Qu Units Result 1 Receptance Spike - % Recovery % 100 80-120 Pass Test Lab Sample ID Qu Units Result 1 Result	2-Nitrophenol			%	97	30-130	Pass	
2.4-Dintrophenol 39 30-130 Pass 384-Methylphenol (m&p-Cresol) % 87 30-130 Pass Ahlteryhphenol % 87 30-130 Pass Dinoseb % 84 30-130 Pass Dinoseb % 81 30-130 Pass LCS - % Recovery % 84 30-130 Pass Heavy Motals % 107 80-120 Pass Cadmium % 102 80-120 Pass Cadmium % 100 80-120 Pass Copper % 100 80-120 Pass Laad % 101 80-120 Pass Nickel % 100 80-120 Pass Zinc % 102 75-125 Pass Zinc % 96 80-120 Pass Code MB*Fo05993 NCP % 86 70-130 Pass Zinc	2.4-Dimethylphenol			%	93	30-130	Pass	
38.4-Methylphenol (m&p-Cresol) y 87 30-130 Pass 4-Nitrophenol 30-130 Pass 30-130 Pass Dinoseb % 84 30-130 Pass Phenol % 84 30-130 Pass CS *% Recovery % 81 30-130 Pass ICCs *% Recovery % 107 80-120 Pass Cadmium % 107 80-120 Pass Corronium % 100 80-120 Pass Copper % 100 80-120 Pass Lead % 100 80-120 Pass Nickel % 100 80-120 Pass Sike *% Recovery % 100 80-120 Pass Cadroium % 96 80-120 Pass Sike *% Recovery % 96 80-120 Pass Test Lab Sample D Ga Ga Ga Ga	2.4-Dinitrophenol			%	39	30-130	Pass	
4-Mitrophenol % 74 30-130 Pass Dinoseb % 84 30-130 Pass Phenol 30-130 Pass LCS -% Recovery % 81 30-130 Pass KCS -% Recovery % 81 30-130 Pass KCS -% Recovery % 107 80-120 Pass Cadmium % 102 80-120 Pass Commum % 100 80-120 Pass Copper % 100 80-120 Pass Lead % 100 80-120 Pass Nickel % 100 80-120 Pass Nickel % 96 80-120 Pass Zinc % 96 80-120 Pass Cadifying Yourks Result 1 80-120 Pass Total Recovers/ Yourks Result 1 80-120 Pass Total Recoverable Hydrocarbons - 1999 NEPM Fractors	3&4-Methylphenol (m&p-Cresol)			%	87	30-130	Pass	
Dinoseb % 84 30-130 Pass Phenol % 81 30-130 Pass CCS -% Recovery % 107 80-120 Pass Arsenic % 107 80-120 Pass Constraints Cadmium % 100 80-120 Pass Constraints % 100 80-120 Pass Copper % 100 80-120 Pass Constraints % 100 80-120 Pass Lead % 100 80-120 Pass Constraints Constraints <td>4-Nitrophenol</td> <td></td> <td></td> <td>%</td> <td>74</td> <td>30-130</td> <td>Pass</td> <td></td>	4-Nitrophenol			%	74	30-130	Pass	
Phenol % 81 30.130 Pass LCS - % Recovery	Dinoseb			%	84	30-130	Pass	
LCS -% Recovery Heavy Metals ////////////////////////////////////	Phenol			%	81	30-130	Pass	
Heavy Metals v v v v v Arsenic % 102 80-120 Pass Cadmium Cadmium % 102 80-120 Pass Cadmium Chromium % 100 80-120 Pass Cadmium Copper % 100 80-120 Pass Cadmium Lead Without % 100 80-120 Pass Mercury % 102 75-125 Pass Pass Nickel % 100 80-120 Pass Zinc % 100 80-120 Pass Cadmitying Zinc % 96 80-120 Pass Cadmitying Spike - % Recovery Units Result 1 Acceptance Pass Cadmitying TRH C6-C9 M18-Fe05993 NCP % 86 70-130 Pass Spike - % Recovery Result 1 To-130 Pass Cadmityin	LCS - % Recovery				-		1	
Arsenic % 107 80-120 Pass Cadmium % 106 80-120 Pass Chromium % 106 80-120 Pass Copper % 100 80-120 Pass Lead % 1010 80-120 Pass Mickel % 1010 80-120 Pass Nickel % 102 75-125 Pass Nickel % 100 80-120 Pass Zinc % 96 80-120 Pass Copper Test Lab Sample ID QA Units Result 1 Acceptance Pass Spike -% Recovery Total Recoverable Hydrocarbons - 1999 NEPM Fractions Result 1 Colore Co	Heavy Metals							
Cadmium % 102 80-120 Pass Chromium % 106 80-120 Pass Copper % 100 80-120 Pass Lead % 101 80-120 Pass Mercury % 102 75-125 Pass Nickel % 100 80-120 Pass Zinc % 100 80-120 Pass Zinc % 96 80-120 Pass Spike - % Recovery % 100 80-120 Pass Total Recoverable Hydrocarbons - 1999 NEPM Fractions % 96 80-120 Pass Spike - % Recovery Result 1 Result 1 Merceotarbane Code TRH Clo-C14 B18-Fe0593 NCP<%	Arsenic			%	107	80-120	Pass	
Chromium % 106 80-120 Pass Copper % 100 80-120 Pass Mercury % 101 80-120 Pass Mickel % 102 75-125 Pass Nickel % 100 80-120 Pass Zinc % 100 80-120 Pass Test Lab Sample ID QA Source Units Result 1 Acceptance Limits Pass Spike -% Recovery Units Result 1 Acceptance Limits Pass Cualifying Code Spike -% Recovery M18-Fe05933 NCP % 86 70-130 Pass Spike -% Recovery Result 1 70-130 Pass Cualifying Code Spike -% Recovery M18-Fe05933 NCP % 86 70-130 Pass Spike -% Recovery M18-Fe05933 NCP % 92 70-130 Pass Spike -% Recovery M18-Fe05933 NCP % 9	Cadmium			%	102	80-120	Pass	
Copper % 100 80-120 Pass Lead % 111 80-120 Pass Mercury % 102 75-125 Pass Nickel % 100 80-120 Pass Zinc % 96 80-120 Pass Test Lab Sample ID QA Source Units Result 1 Acceptance Qualifying Code Spike -% Recovery Total Recoverable Hydrocarbons - 1999 NEPM Fractions Result 1 70-130 Pass Qualifying Code Spike -% Recovery Test Result 1 70-130 Pass Spike -% Recovery Test Result 1 70-130 Pass Spike -% Recovery Test Result 1 70-130 Pass Total Recores M18-Fe05993 NCP % 85 70-130 Pass Total Recover M18-Fe05993 NCP % 92 70-130 <	Chromium			%	106	80-120	Pass	
Lead % 111 80-120 Pass Mercury % 102 75-125 Pass Nickel *% 100 80-120 Pass Zinc % 96 80-120 Pass Test Lab Sample ID Source Units Result 1 Acceptance Limits Pass Qualifying Code Spike - % Recovery M18-Fe05983 NCP % 86 70-130 Pass TRH C6-05 M18-Fe05983 NCP % 81 70-130 Pass Spike - % Recovery Result 1	Copper			%	100	80-120	Pass	
Mercury % 102 75-125 Pass Nickel % 100 80-120 Pass Zinc % 96 80-120 Pass Qualifying Spike -% Recovery Kesult 1 Result 1 Acceptance Pass Qualifying TRH C6-C9 M18-Fe05993 NCP % 86 70-130 Pass Spike -% Recovery Result 1 Pass TRH C6-C9 M18-Fe05993 NCP % 86 70-130 Pass Spike -% Recovery Benzene M18-Fe05993 NCP % 81 70-130 Pass Toluene M18-Fe05993 NCP % 85 70-130 Pass Chylene M18-Fe05993 NCP % 92 70-130 Pass Chylene M18-Fe05993 NCP % 92 70-130 Pass	Lead			%	111	80-120	Pass	
Nickel % 100 80-120 Pass Zinc % 96 80-120 Pass Test Lab Sample ID QA Source Units Result 1 Acceptance Pass Qualifying Code Spike - % Recovery Kecovers Result 1 Acceptance Pass Qualifying Code TRH C6-C3 M18-Fe05993 NCP % 86 70-130 Pass Spike - % Recovery 81 70-130 Pass Spike - % Recovery 81 70-130 Pass Benzene M18-Fe05993 NCP % 85 70-130 Pass Toluene M18-Fe05993 NCP % 85 70-130 Pass Ethylbenzene M18-Fe05993 NCP % 92 70-130 Pass o-Xylene M18-Fe05993 NCP % 92 70-130 Pass spike - % Recovery <td>Mercury</td> <td></td> <td></td> <td>%</td> <td>102</td> <td>75-125</td> <td>Pass</td> <td></td>	Mercury			%	102	75-125	Pass	
Zinc % 96 80-120 Pass Test Lab Sample ID QA Source Units Result 1 Acceptance Limits Pass Pass Qualitying Code Spike - % Recovery Total Recoverable Hydrocarbons - 1999 NEPM Fractions Result 1 Code Code Code Pass Code Code Code Code <t< td=""><td>Nickel</td><td></td><td></td><td>%</td><td>100</td><td>80-120</td><td>Pass</td><td></td></t<>	Nickel			%	100	80-120	Pass	
Test Lab Sample ID QA Source Result 1 Result 1 Acceptance Limits Pass Limits Qualitying Code Spike -% Recovery Total Recoverable Hydrocarbons - 1999 NEPM Fractions Result 1	Zinc			%	96	80-120	Pass	
Spike - % Recovery Total Recoverable Hydrocarbons - 1999 NEPM Fractions Result 1 TRH C6-C9 M18-Fe05993 NCP % 86 70-130 Pass TRH C10-C14 B18-Fe00485 NCP % 81 70-130 Pass Spike - % Recovery #18-Fe00485 NCP % 81 70-130 Pass BTEX Result 1 Benzene M18-Fe05993 NCP % 74 70-130 Pass Toluene M18-Fe05993 NCP % 85 70-130 Pass Ethylbenzene M18-Fe05993 NCP % 92 70-130 Pass o-Xylenes M18-Fe05993 NCP % 92 70-130 Pass Xylenes - Total M18-Fe05993 NCP % 92 70-130 Pass Spike - % Recovery 70 70-130 Pass Spike - % Spike - % Spike - %	Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Total Recoverable Hydrocarbons - 1999 NEPM Fractions Result 1	Spike - % Recovery					-	1	
TRH C6-C9 M18+e05993 NCP % 86 70-130 Pass TRH C10-C14 B18-Fe00485 NCP % 81 70-130 Pass Spike - % Recovery	Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1			
IRR C10-C14 B18-Fe00485 NCP % 81 70-130 Pass Spike - % Recovery Result 1 Result 1 Image: Constraint of the second secon	TRH C6-C9	M18-Fe05993	NCP	%	86	70-130	Pass	
Spike - % Recovery Result 1 Result 1 Benzene M18-Fe05993 NCP % 74 70-130 Pass Toluene M18-Fe05993 NCP % 85 70-130 Pass Ethylbenzene M18-Fe05993 NCP % 85 70-130 Pass m&p-Xylenes M18-Fe05993 NCP % 92 70-130 Pass o-Xylenes M18-Fe05993 NCP % 92 70-130 Pass o-Xylenes M18-Fe05993 NCP % 92 70-130 Pass o-Xylene M18-Fe05993 NCP % 91 70-130 Pass Spike - % Recovery Total M18-Fe05993 NCP % 92 70-130 Pass TRt C6-C10 M18-Fe05993 NCP % 104 70-130 Pass TRH >C10-C16 B18-Fe00485 NCP % 71 70-130 Pass Spike - % Recovery Polycyclic Aromatic Hydrocarbons<	1RH C10-C14	B18-Fe00485	NCP	%	81	70-130	Pass	
B IZA M18-Fe05993 NCP % 74 70-130 Pass Benzene M18-Fe05993 NCP % 85 70-130 Pass Toluene M18-Fe05993 NCP % 85 70-130 Pass Ethylbenzene M18-Fe05993 NCP % 92 70-130 Pass o-Xylenes M18-Fe05993 NCP % 92 70-130 Pass o-Xylene M18-Fe05993 NCP % 92 70-130 Pass o-Xylene M18-Fe05993 NCP % 91 70-130 Pass o-Xylene M18-Fe05993 NCP % 92 70-130 Pass Spike - % Recovery Total Recoverable Hydrocarbons - 2013 NEPM Fractions Result 1 Naphthalene M18-Fe05993 NCP % 82 70-130 Pass TRH C6-C10 M18-Fe05993 NCP % 82 70-130 Pass Spike - % Recovery	Spike - % Recovery				Deput 1		[
Benzene M16-Pe03933 NCP % 74 70-130 Pass Toluene M18-Fe05993 NCP % 85 70-130 Pass Ethylbenzene M18-Fe05993 NCP % 92 70-130 Pass m&p-Xylenes M18-Fe05993 NCP % 92 70-130 Pass o-Xylene M18-Fe05993 NCP % 91 70-130 Pass o-Xylene M18-Fe05993 NCP % 92 70-130 Pass Spike - % Recovery M18-Fe05993 NCP % 92 70-130 Pass Spike - % Recovery Total Recoverable Hydrocarbons - 2013 NEPM Fractions Result 1 Naphthalene M18-Fe05993 NCP % 104 70-130 Pass TRH C6-C10 M18-Fe05993 NCP % 82 70-130 Pass TRH >C10-C16 B18-Fe00485 NCP % 71 70-130 Pass	BIEA	M19 Ec05002		0/		70.120	Deee	<u> </u>
Totkene MT8-Fe03933 NCP % 63 70-130 Pass Ethylbenzene M18-Fe05993 NCP % 92 70-130 Pass m&p-Xylenes M18-Fe05993 NCP % 92 70-130 Pass o-Xylene M18-Fe05993 NCP % 91 70-130 Pass xylenes - Total M18-Fe05993 NCP % 92 70-130 Pass Spike - % Recovery M18-Fe05993 NCP % 92 70-130 Pass Spike - % Recovery M18-Fe05993 NCP % 92 70-130 Pass Spike - % Recovery Total Recoverable Hydrocarbons - 2013 NEPM Fractions Result 1 Naphthalene M18-Fe05993 NCP % 104 70-130 Pass TRH C6-C10 M18-Fe05993 NCP % 82 70-130 Pass Spike - % Recovery Polycyclic Aromatic Hydrocarbons Result 1	Taluana	M18 Fe05993	NCP	% 0/	74	70-130	Pass	<u> </u>
Ethyberizene M18-Fe05993 NCP % 92 70-130 Pass m&p-Xylenes M18-Fe05993 NCP % 92 70-130 Pass o-Xylene M18-Fe05993 NCP % 91 70-130 Pass xylenes - Total M18-Fe05993 NCP % 92 70-130 Pass Spike - % Recovery M18-Fe05993 NCP % 92 70-130 Pass Total Recoverable Hydrocarbons - 2013 NEPM Fractions Naphthalene M18-Fe05993 NCP % 104 70-130 Pass TRH C6-C10 M18-Fe05993 NCP % 82 70-130 Pass TRH >C10-C16 B18-Fe00485 NCP % 71 70-130 Pass Spike - % Recovery Polycyclic Aromatic Hydrocarbons Result 1 M M Acenaphthene M18-Fe04355 NCP % 81 70-130 Pass Acenaphthylene M18-Fe04355 NCP %	Toluene Ethylhopzopo	M18 Fe05993	NCP	% 0/	00	70-130	Pass	<u> </u>
Imap-Aylenes Imap-Aylenes<		M18 Fe05993	NCP	% 0/	92	70-130	Pass	<u> </u>
Or-Aytenie M18-Fe03993 NCP % 91 70-130 Pass Xylenes - Total M18-Fe05993 NCP % 92 70-130 Pass Spike - % Recovery Total Recoverable Hydrocarbons - 2013 NEPM Fractions Result 1 Naphthalene M18-Fe05993 NCP % 104 70-130 Pass TRH C6-C10 M18-Fe05993 NCP % 82 70-130 Pass TRH >C10-C16 B18-Fe00485 NCP % 71 70-130 Pass Spike - % Recovery Exposes Result 1 Feosystem Feosystem Feosystem Polycyclic Aromatic Hydrocarbons M18-Fe04355 NCP % 81 70-130 Pass Acenaphthene M18-Fe04355 NCP % 81 70-130 Pass Acenaphthylene M18-Fe04355 NCP % 96 70-130 Pass Anthracene M18-Fe04355 NCP % 93 70-130 <		M18 E005003		% 0/	92	70-130	Pass	
Ayrenes - Total M18-Fe03933 NCP % 92 70-130 Pass Spike - % Recovery Total Recoverable Hydrocarbons - 2013 NEPM Fractions Result 1 Naphthalene M18-Fe05993 NCP % 104 70-130 Pass TRH C6-C10 M18-Fe05993 NCP % 82 70-130 Pass TRH >C10-C16 B18-Fe00485 NCP % 71 70-130 Pass Spike - % Recovery Polycyclic Aromatic Hydrocarbons Result 1 Acenaphthene M18-Fe04355 NCP % 81 70-130 Pass Acenaphtylene M18-Fe04355 NCP % 96 70-130 Pass Anthracene M18-Fe04355 NCP % 93 70-130 Pass		M18 E005003		70 0/	91	70-130	Pass	
Spike - % Recovery Result 1 Image: constraint of the system of the syst	Spike - % Pecovery	MT0-Fe05995	INCE	70	92	70-130	F 455	
Naphthalene M18-Fe05993 NCP % 104 70-130 Pass TRH C6-C10 M18-Fe05993 NCP % 82 70-130 Pass TRH >C10-C16 B18-Fe00485 NCP % 71 70-130 Pass Spike - % Recovery Polycyclic Aromatic Hydrocarbons Result 1 C C Acenaphthene M18-Fe04355 NCP % 81 70-130 Pass Acenaphthylene M18-Fe04355 NCP % 81 70-130 Pass Anthracene M18-Fe04355 NCP % 96 70-130 Pass	Total Recoverable Hydrocarbons -	2013 NEPM Eract	ions		Result 1			
Interfere Mills Fe050000 Nor	Nanhthalene	M18-E005993	NCP	%	104	70-130	Pass	
TRH >C10-C16 B18-Fe00485 NCP % 71 70-130 Pass Spike - % Recovery Polycyclic Aromatic Hydrocarbons Result 1 Acenaphthene M18-Fe04355 NCP % 81 70-130 Pass Acenaphthene M18-Fe04355 NCP % 81 70-130 Pass Acenaphthylene M18-Fe04355 NCP % 96 70-130 Pass Anthracene M18-Fe04355 NCP % 93 70-130 Pass	TRH C6-C10	M18-Fe05993	NCP	%	82	70-130	Pass	
Spike - % Recovery Result 1 Image: Constraint of the second seco	TRH >C10-C16	B18-Fe00485	NCP	%	71	70-130	Pass	
Polycyclic Aromatic Hydrocarbons Result 1 Result 1 Acenaphthene M18-Fe04355 NCP % 81 70-130 Pass Acenaphthylene M18-Fe04355 NCP % 96 70-130 Pass Anthracene M18-Fe04355 NCP % 93 70-130 Pass	Spike - % Recovery							
Acenaphthene M18-Fe04355 NCP % 81 70-130 Pass Acenaphthylene M18-Fe04355 NCP % 96 70-130 Pass Anthracene M18-Fe04355 NCP % 93 70-130 Pass	Polycyclic Aromatic Hydrocarbons	;			Result 1			
Acenaphthylene M18-Fe04355 NCP % 96 70-130 Pass Anthracene M18-Fe04355 NCP % 93 70-130 Pass	Acenaphthene	M18-Fe04355	NCP	%	81	70-130	Pass	
Anthracene M18-Fe04355 NCP % 93 70-130 Pass	Acenaphthylene	M18-Fe04355	NCP	%	96	70-130	Pass	
	Anthracene	M18-Fe04355	NCP	%	93	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Benz(a)anthracene	M18-Fe04355	NCP	%	118			70-130	Pass	
Benzo(a)pyrene	M18-Fe04355	NCP	%	99			70-130	Pass	
Benzo(b&j)fluoranthene	M18-Fe04355	NCP	%	108			70-130	Pass	
Benzo(g.h.i)perylene	M18-Fe04355	NCP	%	123			70-130	Pass	
Benzo(k)fluoranthene	M18-Fe04355	NCP	%	79			70-130	Pass	
Chrysene	M18-Fe04355	NCP	%	98			70-130	Pass	
Dibenz(a.h)anthracene	M18-Fe04355	NCP	%	110			70-130	Pass	
Fluoranthene	M18-Fe04355	NCP	%	107			70-130	Pass	
Fluorene	M18-Fe04355	NCP	%	88			70-130	Pass	
Indeno(1.2.3-cd)pyrene	M18-Fe04355	NCP	%	120			70-130	Pass	
Naphthalene	M18-Fe04355	NCP	%	78			70-130	Pass	
Phenanthrene	M18-Fe04355	NCP	%	125			70-130	Pass	
Pyrene	M18-Fe04355	NCP	%	99			70-130	Pass	
Spike - % Recovery		•							
Phenols (Halogenated)				Result 1					
2-Chlorophenol	M18-Fe04355	NCP	%	104			30-130	Pass	
2.4-Dichlorophenol	M18-Fe04355	NCP	%	103			30-130	Pass	
2.4.5-Trichlorophenol	M18-Fe04355	NCP	%	102			30-130	Pass	
2.4.6-Trichlorophenol	M18-Fe04355	NCP	%	92			30-130	Pass	
2.6-Dichlorophenol	M18-Fe04355	NCP	%	100			30-130	Pass	
4-Chloro-3-methylphenol	M18-Fe04355	NCP	%	108			30-130	Pass	
Tetrachlorophenols - Total	M18-Fe04355	NCP	%	61			30-130	Pass	
Spike - % Recovery	•			•	•				
Phenols (non-Halogenated)				Result 1					
2-Cyclohexyl-4.6-dinitrophenol	M18-Fe04355	NCP	%	68			30-130	Pass	
2-Methyl-4.6-dinitrophenol	M18-Fe04355	NCP	%	41			30-130	Pass	
2-Methylphenol (o-Cresol)	M18-Fe04355	NCP	%	103			30-130	Pass	
2-Nitrophenol	M18-Fe04355	NCP	%	109			30-130	Pass	
2.4-Dimethylphenol	M18-Fe04355	NCP	%	111			30-130	Pass	
2.4-Dinitrophenol	M18-Fe04355	NCP	%	52			30-130	Pass	
3&4-Methylphenol (m&p-Cresol)	M18-Fe04355	NCP	%	104			30-130	Pass	
4-Nitrophenol	M18-Fe04355	NCP	%	93			30-130	Pass	
Dinoseb	M18-Fe04355	NCP	%	85			30-130	Pass	
Phenol	M18-Fe04355	NCP	%	95			30-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	M18-Fe05539	NCP	%	88			75-125	Pass	
Cadmium	M18-Fe05539	NCP	%	92			75-125	Pass	
Chromium	M18-Fe05539	NCP	%	93			75-125	Pass	
Copper	M18-Fe05539	NCP	%	89			75-125	Pass	
Lead	M18-Fe05539	NCP	%	99			75-125	Pass	
Mercury	M18-Fe05539	NCP	%	95			70-130	Pass	
Nickel	M18-Fe05539	NCP	%	89			75-125	Pass	
Zinc	M18-Fe05539	NCP	%	86			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M18-Fe05992	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	M18-Fe05798	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M18-Fe05798	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	M18-Fe05798	NCP	mg/kg	< 50	< 50	<1	30%	Pass	

Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	M18-Fe05992	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M18-Fe05992	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M18-Fe05992	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M18-Fe05992	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	M18-Fe05992	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	M18-Fe05992	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M18-Fe05992	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M18-Fe05992	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	M18-Fe05798	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	M18-Fe05798	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	M18-Fe05798	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbons	5			Result 1	Result 2	RPD			
Acenaphthene	B18-Ja26446	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	B18-Ja26446	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	B18-Ja26446	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	B18-Ja26446	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	B18-Ja26446	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	B18-Ja26446	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	B18-Ja26446	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	B18-Ja26446	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	B18-Ja26446	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	B18-Ja26446	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	B18-Ja26446	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	B18-Ja26446	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	B18-Ja26446	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	B18-Ja26446	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	B18-Ja26446	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	B18-Ja26446	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate							-		
Phenols (Halogenated)				Result 1	Result 2	RPD			
2-Chlorophenol	B18-Ja26446	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dichlorophenol	B18-Ja26446	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.5-Trichlorophenol	B18-Ja26446	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
2.4.6-Trichlorophenol	B18-Ja26446	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
2.6-Dichlorophenol	B18-Ja26446	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Chloro-3-methylphenol	B18-Ja26446	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Pentachlorophenol	B18-Ja26446	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Tetrachlorophenols - Total	B18-Ja26446	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate					1			1	
Phenols (non-Halogenated)				Result 1	Result 2	RPD			
2-Cyclohexyl-4.6-dinitrophenol	B18-Ja26446	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
2-Methyl-4.6-dinitrophenol	B18-Ja26446	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
2-Methylphenol (o-Cresol)	B18-Ja26446	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
2-Nitrophenol	B18-Ja26446	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
2.4-Dimethylphenol	B18-Ja26446	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dinitrophenol	B18-Ja26446	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
3&4-Methylphenol (m&p-Cresol)	B18-Ja26446	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
4-Nitrophenol	B18-Ja26446	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Dinoseb	B18-Ja26446	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Phenol	B18-Ja26446	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M18-Fe05538	NCP	mg/kg	13	13	1.0	30%	Pass	
Cadmium	M18-Fe05538	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M18-Fe05538	NCP	mg/kg	45	49	8.0	30%	Pass	
Copper	M18-Fe05538	NCP	mg/kg	< 5	5.4	8.0	30%	Pass	
Lead	M18-Fe05538	NCP	mg/kg	14	16	12	30%	Pass	
Mercury	M18-Fe05538	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M18-Fe05538	NCP	mg/kg	13	15	13	30%	Pass	
Zinc	M18-Fe05538	NCP	mg/kg	14	14	5.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	M18-Fe05538	NCP	%	19	20	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No
Comments	

Qualifier Codes/Comments

Code Description

0000	Boochpilon
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Mary Makarios	Analytical Services Manager
Alex Petridis	Senior Analyst-Metal (VIC)
Harry Bacalis	Senior Analyst-Volatile (VIC)
Huong Le	Senior Analyst-Inorganic (VIC)
Joseph Edouard	Senior Analyst-Organic (VIC)

Glenn Jackson National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

This page has been left intentionally blank